Abstract
We have recently shown that insulin-resistant obese subjects exhibit impaired endothelial function. Here, we test the hypothesis that elevation of circulating FFA to levels seen in insulin-resistant subjects can impair endothelial function. We studied leg blood flow responses to graded intrafemoral artery infusions of the endothelium-dependent vasodilator methacholine chloride (Mch) or the endothelium-independent vasodilator sodium nitroprusside during the infusion of saline and after raising systemic circulating FFA levels exogenously via a low- or high-dose infusion of Intralipid plus heparin or endogenously by an infusion of somatostatin (SRIF) to produce insulinopenia in groups of lean healthy humans. After 2 h of infusion of Intralipid plus heparin, FFA levels increased from 562+/-95 to 1,303+/-188 micromol, and from 350+/-35 to 3,850+/-371 micromol (P < 0.001) vs. saline for both low- and high-dose groups, respectively. Mch-induced vasodilation relative to baseline was reduced by approximately 20% in response to the raised FFA levels in both groups (P < 0.05, saline vs. FFA, ANOVA). In contrast, similar FFA elevation did not change leg blood flow responses to sodium nitroprusside. During the 2-h SRIF infusion, insulin levels fell, and FFA levels rose from 474+/-22 to 1,042+/-116 micromol (P < 0.01); Mch-induced vasodilation was reduced by approximately 20% (P < 0.02, saline vs. SRIF, ANOVA). Replacement of basal insulin levels during SRIF resulted in a fall of FFA levels from 545+/-47 to 228+/-61 micromol, and prevented the impairment of Mch-induced vasodilation seen with SRIF alone. In conclusion, (a) elevated circulating FFA levels cause endothelial dysfunction, and (b) impaired endothelial function in insulin-resistant humans may be secondary to the elevated FFA concentrations observed in these patients.
Full Text
The Full Text of this article is available as a PDF (228.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baron A. D., Brechtel G., Wallace P., Edelman S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988 Dec;255(6 Pt 1):E769–E774. doi: 10.1152/ajpendo.1988.255.6.E769. [DOI] [PubMed] [Google Scholar]
- Baron A. D., Kolterman O. G., Bell J., Mandarino L. J., Olefsky J. M. Rates of noninsulin-mediated glucose uptake are elevated in type II diabetic subjects. J Clin Invest. 1985 Nov;76(5):1782–1788. doi: 10.1172/JCI112169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonadonna R. C., Zych K., Boni C., Ferrannini E., DeFronzo R. A. Time dependence of the interaction between lipid and glucose in humans. Am J Physiol. 1989 Jul;257(1 Pt 1):E49–E56. doi: 10.1152/ajpendo.1989.257.1.E49. [DOI] [PubMed] [Google Scholar]
- Bruce R., Godsland I., Walton C., Crook D., Wynn V. Associations between insulin sensitivity, and free fatty acid and triglyceride metabolism independent of uncomplicated obesity. Metabolism. 1994 Oct;43(10):1275–1281. doi: 10.1016/0026-0495(94)90222-4. [DOI] [PubMed] [Google Scholar]
- Davda R. K., Stepniakowski K. T., Lu G., Ullian M. E., Goodfriend T. L., Egan B. M. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension. 1995 Nov;26(5):764–770. doi: 10.1161/01.hyp.26.5.764. [DOI] [PubMed] [Google Scholar]
- Grekin R. J., Vollmer A. P., Sider R. S. Pressor effects of portal venous oleate infusion. A proposed mechanism for obesity hypertension. Hypertension. 1995 Jul;26(1):193–198. doi: 10.1161/01.hyp.26.1.193. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992 Sep;41(9):1076–1083. doi: 10.2337/diab.41.9.1076. [DOI] [PubMed] [Google Scholar]
- Lloyd-Jones D. M., Bloch K. D. The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med. 1996;47:365–375. doi: 10.1146/annurev.med.47.1.365. [DOI] [PubMed] [Google Scholar]
- NOVAK M. COLORIMETRIC ULTRAMICRO METHOD FOR THE DETERMINATION OF FREE FATTY ACIDS. J Lipid Res. 1965 Jul;6:431–433. [PubMed] [Google Scholar]
- Reaven G. M. Syndrome X: 6 years later. J Intern Med Suppl. 1994;736:13–22. [PubMed] [Google Scholar]
- Steinberg H. O., Brechtel G., Johnson A., Fineberg N., Baron A. D. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994 Sep;94(3):1172–1179. doi: 10.1172/JCI117433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg H. O., Chaker H., Leaming R., Johnson A., Brechtel G., Baron A. D. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996 Jun 1;97(11):2601–2610. doi: 10.1172/JCI118709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stepniakowski K. T., Goodfriend T. L., Egan B. M. Fatty acids enhance vascular alpha-adrenergic sensitivity. Hypertension. 1995 Apr;25(4 Pt 2):774–778. doi: 10.1161/01.hyp.25.4.774. [DOI] [PubMed] [Google Scholar]
- Swislocki A. L., Chen Y. D., Golay A., Chang M. O., Reaven G. M. Insulin suppression of plasma-free fatty acid concentration in normal individuals and patients with type 2 (non-insulin-dependent) diabetes. Diabetologia. 1987 Aug;30(8):622–626. doi: 10.1007/BF00277318. [DOI] [PubMed] [Google Scholar]