Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1248–1255. doi: 10.1172/JCI119638

Melanoma cells constitutively release an anchor-positive soluble form of protectin (sCD59) that retains functional activities in homologous complement-mediated cytotoxicity.

L I Brasoveanu 1, E Fonsatti 1, A Visintin 1, M Pavlovic 1, I Cattarossi 1, F Colizzi 1, A Gasparollo 1, S Coral 1, V Horejsi 1, M Altomonte 1, M Maio 1
PMCID: PMC508302  PMID: 9276743

Abstract

Protectin (CD59), a glycosylphosphatidylinositol-anchored cell membrane glycoprotein, is differentially expressed on melanocytic cells and represents the main restriction factor of C-mediated lysis of melanoma cells. In this study, we report that CD59-positive melanoma cells constitutively release a soluble form of CD59 (sCD59), and that its levels directly correlate (r = 0.926; P < 0.05) with the amount of membrane-bound CD59. SDS-PAGE analysis showed that the molecular components of sCD59 are similar to those of cellular CD59 expressed by melanoma cells. Melanoma-released sCD59 is anchor positive since it inserts into cell membranes of homologous cells that transiently increase their expression of CD59. Moreover, sCD59 is functional: it blocks the binding of the anti-CD59 mAb YTH53.1 to melanoma cells and reverses its effects on C-mediated lysis. In fact, preincubation of mAb YTH53.1 with scalar doses of conditioned media of CD59-positive but not of CD59-negative melanoma cells reduced significantly (P < 0.05), and in a dose-dependent fashion, the enhancement of C-mediated lysis of anti-GD3-sensitized melanoma cells induced by the masking of cellular CD59 by mAb YTH53.1. Altogether, these data demonstrate that CD59-positive human melanoma cells release a soluble form of CD59 that is structurally similar to cellular CD59, retains its anchoring ability, is functional, and may impair the effectiveness of clinical approaches to humoral immunotherapy for human melanoma.

Full Text

The Full Text of this article is available as a PDF (651.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altomonte M., Colizzi F., Esposito G., Maio M. Circulating intercellular adhesion molecule 1 as a marker of disease progression in cutaneous melanoma. N Engl J Med. 1992 Sep 24;327(13):959–959. doi: 10.1056/NEJM199209243271314. [DOI] [PubMed] [Google Scholar]
  2. Altomonte M., Gloghini A., Bertola G., Gasparollo A., Carbone A., Ferrone S., Maio M. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res. 1993 Jul 15;53(14):3343–3348. [PubMed] [Google Scholar]
  3. Becker J. C., Termeer C., Schmidt R. E., Bröcker E. B. Soluble intercellular adhesion molecule-1 inhibits MHC-restricted specific T cell/tumor interaction. J Immunol. 1993 Dec 15;151(12):7224–7232. [PubMed] [Google Scholar]
  4. Bernhard H., Meyer zum Büschenfelde K. H., Dippold W. G. Ganglioside GD3 shedding by human malignant melanoma cells. Int J Cancer. 1989 Jul 15;44(1):155–160. doi: 10.1002/ijc.2910440127. [DOI] [PubMed] [Google Scholar]
  5. Bjørge L., Jensen T. S., Kristoffersen E. K., Ulstein M., Matre R. Identification of the complement regulatory protein CD59 in human colostrum and milk. Am J Reprod Immunol. 1996 Jan;35(1):43–50. doi: 10.1111/j.1600-0897.1996.tb00007.x. [DOI] [PubMed] [Google Scholar]
  6. Bjørge L., Jensen T. S., Vedeler C. A., Ulvestad E., Kristoffersen E. K., Matre R. Soluble CD59 in pregnancy and infancy. Immunol Lett. 1993 May;36(2):233–233. doi: 10.1016/0165-2478(93)90058-a. [DOI] [PubMed] [Google Scholar]
  7. Bjørge L., Vedeler C. A., Ulvestad E., Matre R. Expression and function of CD59 on colonic adenocarcinoma cells. Eur J Immunol. 1994 Jul;24(7):1597–1603. doi: 10.1002/eji.1830240722. [DOI] [PubMed] [Google Scholar]
  8. Brasoveanu L. I., Altomonte M., Fonsatti E., Colizzi F., Coral S., Nicotra M. R., Cattarossi I., Cattelan A., Natali P. G., Maio M. Levels of cell membrane CD59 regulate the extent of complement-mediated lysis of human melanoma cells. Lab Invest. 1996 Jan;74(1):33–42. [PubMed] [Google Scholar]
  9. Brasoveanu L. I., Altomonte M., Gloghini A., Fonsatti E., Coral S., Gasparollo A., Montagner R., Cattarossi I., Simonelli C., Cattelan A. Expression of protectin (CD59) in human melanoma and its functional role in cell- and complement-mediated cytotoxicity. Int J Cancer. 1995 May 16;61(4):548–556. doi: 10.1002/ijc.2910610420. [DOI] [PubMed] [Google Scholar]
  10. Davies A., Lachmann P. J. Membrane defence against complement lysis: the structure and biological properties of CD59. Immunol Res. 1993;12(3):258–275. doi: 10.1007/BF02918257. [DOI] [PubMed] [Google Scholar]
  11. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hakulinen J., Meri S. Expression and function of the complement membrane attack complex inhibitor protectin (CD59) on human breast cancer cells. Lab Invest. 1994 Dec;71(6):820–827. [PubMed] [Google Scholar]
  13. Houghton A. N., Mintzer D., Cordon-Cardo C., Welt S., Fliegel B., Vadhan S., Carswell E., Melamed M. R., Oettgen H. F., Old L. J. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1242–1246. doi: 10.1073/pnas.82.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Junnikkala S., Hakulinen J., Meri S. Targeted neutralization of the complement membrane attack complex inhibitor CD59 on the surface of human melanoma cells. Eur J Immunol. 1994 Mar;24(3):611–615. doi: 10.1002/eji.1830240318. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lehto T., Meri S. Interactions of soluble CD59 with the terminal complement complexes. CD59 and C9 compete for a nascent epitope on C8. J Immunol. 1993 Nov 1;151(9):4941–4949. [PubMed] [Google Scholar]
  17. Maio M., Altomonte M., Tatake R., Zeff R. A., Ferrone S. Reduction in susceptibility to natural killer cell-mediated lysis of human FO-1 melanoma cells after induction of HLA class I antigen expression by transfection with B2m gene. J Clin Invest. 1991 Jul;88(1):282–289. doi: 10.1172/JCI115289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maio M., Gulwani B., Langer J. A., Kerbel R. S., Duigou G. J., Fisher P. B., Ferrone S. Modulation by interferons of HLA antigen, high-molecular-weight melanoma associated antigen, and intercellular adhesion molecule 1 expression by cultured melanoma cells with different metastatic potential. Cancer Res. 1989 Jun 1;49(11):2980–2987. [PubMed] [Google Scholar]
  19. Maio M., Parmiani G. Melanoma immunotherapy: new dreams or solid hopes? Immunol Today. 1996 Sep;17(9):405–407. doi: 10.1016/0167-5699(96)30014-5. [DOI] [PubMed] [Google Scholar]
  20. Meri S., Waldmann H., Lachmann P. J. Distribution of protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest. 1991 Nov;65(5):532–537. [PubMed] [Google Scholar]
  21. Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
  22. Mäenpä A., Junnikkala S., Hakulinen J., Timonen T., Meri S. Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas. Am J Pathol. 1996 Apr;148(4):1139–1152. [PMC free article] [PubMed] [Google Scholar]
  23. Niehans G. A., Cherwitz D. L., Staley N. A., Knapp D. J., Dalmasso A. P. Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin). Am J Pathol. 1996 Jul;149(1):129–142. [PMC free article] [PubMed] [Google Scholar]
  24. Puppo F., Scudeletti M., Indiveri F., Ferrone S. Serum HLA class I antigens: markers and modulators of an immune response? Immunol Today. 1995 Mar;16(3):124–127. doi: 10.1016/0167-5699(95)80127-8. [DOI] [PubMed] [Google Scholar]
  25. Riethmüller G., Schneider-Gädicke E., Johnson J. P. Monoclonal antibodies in cancer therapy. Curr Opin Immunol. 1993 Oct;5(5):732–739. doi: 10.1016/0952-7915(93)90129-g. [DOI] [PubMed] [Google Scholar]
  26. Roddy J., Clark I., Hazleman B. L., Compston D. A., Scolding N. J. Cerebrospinal fluid concentrations of the complement MAC inhibitor CD59 in multiple sclerosis and patients with other neurological disorders. J Neurol. 1994 Aug;241(9):557–560. doi: 10.1007/BF00873519. [DOI] [PubMed] [Google Scholar]
  27. Rodeck U., Bossler A., Graeven U., Fox F. E., Nowell P. C., Knabbe C., Kari C. Transforming growth factor beta production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res. 1994 Jan 15;54(2):575–581. [PubMed] [Google Scholar]
  28. Rooney I. A., Atkinson J. P., Krul E. S., Schonfeld G., Polakoski K., Saffitz J. E., Morgan B. P. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med. 1993 May 1;177(5):1409–1420. doi: 10.1084/jem.177.5.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rooney I. A., Heuser J. E., Atkinson J. P. GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. J Clin Invest. 1996 Apr 1;97(7):1675–1686. doi: 10.1172/JCI118594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rooney I. A., Morgan B. P. Characterization of the membrane attack complex inhibitory protein CD59 antigen on human amniotic cells and in amniotic fluid. Immunology. 1992 Aug;76(4):541–547. [PMC free article] [PubMed] [Google Scholar]
  31. Stefanová I., Hilgert I., Kristofová H., Brown R., Low M. G., Horejsí V. Characterization of a broadly expressed human leucocyte surface antigen MEM-43 anchored in membrane through phosphatidylinositol. Mol Immunol. 1989 Feb;26(2):153–161. doi: 10.1016/0161-5890(89)90097-7. [DOI] [PubMed] [Google Scholar]
  32. Telen M. J., Rosse W. F. Phosphatidylinositol-glycan linked proteins of the erythrocyte membrane. Baillieres Clin Haematol. 1991 Dec;4(4):849–868. doi: 10.1016/s0950-3536(06)80033-8. [DOI] [PubMed] [Google Scholar]
  33. Väkevä A., Jauhiainen M., Ehnholm C., Lehto T., Meri S. High-density lipoproteins can act as carriers of glycophosphoinositol lipid-anchored CD59 in human plasma. Immunology. 1994 May;82(1):28–33. [PMC free article] [PubMed] [Google Scholar]
  34. van den Berg C. W., Cinek T., Hallett M. B., Horejsi V., Morgan B. P. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol. 1995 Nov;131(3):669–677. doi: 10.1083/jcb.131.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES