Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1271–1281. doi: 10.1172/JCI119641

Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation In skin organ culture.

S Stoll 1, W Garner 1, J Elder 1
PMCID: PMC508305  PMID: 9276746

Abstract

Exogenous EGF and TGF-alpha accelerate wound healing, but treatment effects are often modest. Using short-term human skin organ culture, we found that autocrine EGF receptor activation could account for this observation. Amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) transcripts were rapidly and markedly induced, whereas EGF and TGF-alpha mRNAs were undetectable or only slightly increased. Vascular permeability factor and keratin 6 transcripts were also strongly induced, albeit with a >/= 3 h delay relative to HB-EGF and amphiregulin. All four transcripts were upregulated in actual healing skin wounds, HB-EGF and keratin 6 being the most prominent. The highly EGF receptor-specific tyrosine kinase inhibitor PD153035 strongly inhibited induction of all four transcripts in organ culture, as well as release of immunoreactive HB-EGF into the medium. These effects were confirmed using the anti-EGF receptor mAb 225 IgG. Neither PD153035 nor 225 IgG was toxic to keratinocytes, as judged by calcein-AM uptake. PD153035 completely abrogated the proliferative phase of keratinocyte outgrowth in skin explant cultures, whereas it had no effect on the antecedent migratory phase. Based on these results, we conclude that EGF receptor activation by highly inducible, keratinocyte-derived heparin-binding ligands is an important mechanism for amplification and transmission of the cutaneous wound healing signal.

Full Text

The Full Text of this article is available as a PDF (697.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard J. A., Graves-Deal R., Pittelkow M. R., DuBois R., Cook P., Ramsey G. W., Bishop P. R., Damstrup L., Coffey R. J. Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem. 1994 Sep 9;269(36):22817–22822. [PubMed] [Google Scholar]
  2. Beerli R. R., Graus-Porta D., Woods-Cook K., Chen X., Yarden Y., Hynes N. E. Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol. 1995 Dec;15(12):6496–6505. doi: 10.1128/mcb.15.12.6496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhora F. Y., Dunkin B. J., Batzri S., Aly H. M., Bass B. L., Sidawy A. N., Harmon J. W. Effect of growth factors on cell proliferation and epithelialization in human skin. J Surg Res. 1995 Aug;59(2):236–244. doi: 10.1006/jsre.1995.1160. [DOI] [PubMed] [Google Scholar]
  4. Brown G. L., Nanney L. B., Griffen J., Cramer A. B., Yancey J. M., Curtsinger L. J., 3rd, Holtzin L., Schultz G. S., Jurkiewicz M. J., Lynch J. B. Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med. 1989 Jul 13;321(2):76–79. doi: 10.1056/NEJM198907133210203. [DOI] [PubMed] [Google Scholar]
  5. Bugge T. H., Kombrinck K. W., Flick M. J., Daugherty C. C., Danton M. J., Degen J. L. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell. 1996 Nov 15;87(4):709–719. doi: 10.1016/s0092-8674(00)81390-2. [DOI] [PubMed] [Google Scholar]
  6. Carpenter G., Cohen S. Epidermal growth factor. J Biol Chem. 1990 May 15;265(14):7709–7712. [PubMed] [Google Scholar]
  7. Coffey R. J., Jr, Derynck R., Wilcox J. N., Bringman T. S., Goustin A. S., Moses H. L., Pittelkow M. R. Production and auto-induction of transforming growth factor-alpha in human keratinocytes. 1987 Aug 27-Sep 2Nature. 328(6133):817–820. doi: 10.1038/328817a0. [DOI] [PubMed] [Google Scholar]
  8. Coffey R. J., Jr, Graves-Deal R., Dempsey P. J., Whitehead R. H., Pittelkow M. R. Differential regulation of transforming growth factor alpha autoinduction in a nontransformed and transformed epithelial cell. Cell Growth Differ. 1992 Jun;3(6):347–354. [PubMed] [Google Scholar]
  9. Cook P. W., Ashton N. M., Karkaria C. E., Siess D. C., Shipley G. D. Differential effects of a heparin antagonist (hexadimethrine) or chlorate on amphiregulin, basic fibroblast growth factor, and heparin-binding EGF-like growth factor activity. J Cell Physiol. 1995 May;163(2):418–429. doi: 10.1002/jcp.1041630222. [DOI] [PubMed] [Google Scholar]
  10. Cook P. W., Mattox P. A., Keeble W. W., Pittelkow M. R., Plowman G. D., Shoyab M., Adelman J. P., Shipley G. D. A heparin sulfate-regulated human keratinocyte autocrine factor is similar or identical to amphiregulin. Mol Cell Biol. 1991 May;11(5):2547–2557. doi: 10.1128/mcb.11.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danilenko D. M., Ring B. D., Lu J. Z., Tarpley J. E., Chang D., Liu N., Wen D., Pierce G. F. Neu differentiation factor upregulates epidermal migration and integrin expression in excisional wounds. J Clin Invest. 1995 Feb;95(2):842–851. doi: 10.1172/JCI117734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Detmar M., Yeo K. T., Nagy J. A., Van de Water L., Brown L. F., Berse B., Elicker B. M., Ledbetter S., Dvorak H. F. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Invest Dermatol. 1995 Jul;105(1):44–50. doi: 10.1111/1523-1747.ep12312542. [DOI] [PubMed] [Google Scholar]
  13. Dvorak H. F., Brown L. F., Detmar M., Dvorak A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995 May;146(5):1029–1039. [PMC free article] [PubMed] [Google Scholar]
  14. Eisen A. Z. Human skin collagenase: localization and distribution in normal human skin. J Invest Dermatol. 1969 May;52(5):442–448. doi: 10.1038/jid.1969.76. [DOI] [PubMed] [Google Scholar]
  15. Elder J. T., Fisher G. J., Lindquist P. B., Bennett G. L., Pittelkow M. R., Coffey R. J., Jr, Ellingsworth L., Derynck R., Voorhees J. J. Overexpression of transforming growth factor alpha in psoriatic epidermis. Science. 1989 Feb 10;243(4892):811–814. doi: 10.1126/science.2916128. [DOI] [PubMed] [Google Scholar]
  16. Elder J. T., Fisher G. J., Zhang Q. Y., Eisen D., Krust A., Kastner P., Chambon P., Voorhees J. J. Retinoic acid receptor gene expression in human skin. J Invest Dermatol. 1991 Apr;96(4):425–433. doi: 10.1111/1523-1747.ep12469889. [DOI] [PubMed] [Google Scholar]
  17. Elder J. T., Kaplan A., Cromie M. A., Kang S., Voorhees J. J. Retinoid induction of CRABP II mRNA in human dermal fibroblasts: use as a retinoid bioassay. J Invest Dermatol. 1996 Mar;106(3):517–521. doi: 10.1111/1523-1747.ep12343887. [DOI] [PubMed] [Google Scholar]
  18. Elder J. T., Sartor C. I., Boman D. K., Benrazavi S., Fisher G. J., Pittelkow M. R. Interleukin-6 in psoriasis: expression and mitogenicity studies. Arch Dermatol Res. 1992;284(6):324–332. doi: 10.1007/BF00372034. [DOI] [PubMed] [Google Scholar]
  19. Elder J. T., Tavakkol A., Klein S. B., Zeigler M. E., Wicha M., Voorhees J. J. Protooncogene expression in normal and psoriatic skin. J Invest Dermatol. 1990 Jan;94(1):19–25. doi: 10.1111/1523-1747.ep12873313. [DOI] [PubMed] [Google Scholar]
  20. Flaumenhaft R., Rifkin D. B. The extracellular regulation of growth factor action. Mol Biol Cell. 1992 Oct;3(10):1057–1065. doi: 10.1091/mbc.3.10.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fry D. W., Kraker A. J., McMichael A., Ambroso L. A., Nelson J. M., Leopold W. R., Connors R. W., Bridges A. J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science. 1994 Aug 19;265(5175):1093–1095. doi: 10.1126/science.8066447. [DOI] [PubMed] [Google Scholar]
  22. Garner W. L., Rodriguez J. L., Miller C. G., Till G. O., Rees R. S., Smith D. J., Remick D. G. Acute skin injury releases neutrophil chemoattractants. Surgery. 1994 Jul;116(1):42–48. [PubMed] [Google Scholar]
  23. Grant G. A., Goldberg G. I., Wilhelm S. M., He C., Eisen A. Z. Activation of extracellular matrix metalloproteases by proteases and organomercurials. Matrix Suppl. 1992;1:217–223. [PubMed] [Google Scholar]
  24. Hashimoto K., Higashiyama S., Asada H., Hashimura E., Kobayashi T., Sudo K., Nakagawa T., Damm D., Yoshikawa K., Taniguchi N. Heparin-binding epidermal growth factor-like growth factor is an autocrine growth factor for human keratinocytes. J Biol Chem. 1994 Aug 5;269(31):20060–20066. [PubMed] [Google Scholar]
  25. Hebda P. A. Stimulatory effects of transforming growth factor-beta and epidermal growth factor on epidermal cell outgrowth from porcine skin explant cultures. J Invest Dermatol. 1988 Nov;91(5):440–445. doi: 10.1111/1523-1747.ep12476480. [DOI] [PubMed] [Google Scholar]
  26. Jensen P. J., Rodeck U. Autocrine/paracrine regulation of keratinocyte urokinase plasminogen activator through the TGF-alpha/EGF receptor. J Cell Physiol. 1993 May;155(2):333–339. doi: 10.1002/jcp.1041550214. [DOI] [PubMed] [Google Scholar]
  27. Jiang C. K., Magnaldo T., Ohtsuki M., Freedberg I. M., Bernerd F., Blumenberg M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6786–6790. doi: 10.1073/pnas.90.14.6786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klein S. B., Fisher G. J., Jensen T. C., Mendelsohn J., Voorhees J. J., Elder J. T. Regulation of TGF-alpha expression in human keratinocytes: PKC-dependent and -independent pathways. J Cell Physiol. 1992 May;151(2):326–336. doi: 10.1002/jcp.1041510214. [DOI] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Leung D. W., Cachianes G., Kuang W. J., Goeddel D. V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989 Dec 8;246(4935):1306–1309. doi: 10.1126/science.2479986. [DOI] [PubMed] [Google Scholar]
  31. Mackie E. J., Halfter W., Liverani D. Induction of tenascin in healing wounds. J Cell Biol. 1988 Dec;107(6 Pt 2):2757–2767. doi: 10.1083/jcb.107.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mansbridge J. N., Knapp A. M. Changes in keratinocyte maturation during wound healing. J Invest Dermatol. 1987 Sep;89(3):253–263. doi: 10.1111/1523-1747.ep12471216. [DOI] [PubMed] [Google Scholar]
  33. Marikovsky M., Vogt P., Eriksson E., Rubin J. S., Taylor W. G., Joachim S., Klagsbrun M. Wound fluid-derived heparin-binding EGF-like growth factor (HB-EGF) is synergistic with insulin-like growth factor-I for Balb/MK keratinocyte proliferation. J Invest Dermatol. 1996 Apr;106(4):616–621. doi: 10.1111/1523-1747.ep12345413. [DOI] [PubMed] [Google Scholar]
  34. Marks R., Bhogal B., Dawber R. P. The migratory property of epidermis in vitro. Arch Dermatol Forsch. 1972;243(3):209–220. doi: 10.1007/BF00595497. [DOI] [PubMed] [Google Scholar]
  35. McCarthy D. W., Downing M. T., Brigstock D. R., Luquette M. H., Brown K. D., Abad M. S., Besner G. E. Production of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at sites of thermal injury in pediatric patients. J Invest Dermatol. 1996 Jan;106(1):49–56. doi: 10.1111/1523-1747.ep12327214. [DOI] [PubMed] [Google Scholar]
  36. Meunier L., Bata-Csorgo Z., Cooper K. D. In human dermis, ultraviolet radiation induces expansion of a CD36+ CD11b+ CD1- macrophage subset by infiltration and proliferation; CD1+ Langerhans-like dendritic antigen-presenting cells are concomitantly depleted. J Invest Dermatol. 1995 Dec;105(6):782–788. doi: 10.1111/1523-1747.ep12326032. [DOI] [PubMed] [Google Scholar]
  37. Morioka S., Lazarus G. S., Jensen P. J. Involvement of urokinase-type plasminogen activator in acantholysis induced by pemphigus IgG. J Invest Dermatol. 1987 Nov;89(5):474–477. doi: 10.1111/1523-1747.ep12460937. [DOI] [PubMed] [Google Scholar]
  38. Nanney L. B. Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol. 1990 May;94(5):624–629. doi: 10.1111/1523-1747.ep12876204. [DOI] [PubMed] [Google Scholar]
  39. Paladini R. D., Takahashi K., Bravo N. S., Coulombe P. A. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol. 1996 Feb;132(3):381–397. doi: 10.1083/jcb.132.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Papadopoulos N. G., Dedoussis G. V., Spanakos G., Gritzapis A. D., Baxevanis C. N., Papamichail M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods. 1994 Dec 28;177(1-2):101–111. doi: 10.1016/0022-1759(94)90147-3. [DOI] [PubMed] [Google Scholar]
  41. Pittelkow M. R., Wille J. J., Jr, Scott R. E. Two functionally distinct classes of growth arrest states in human prokeratinocytes that regulate clonogenic potential. J Invest Dermatol. 1986 Apr;86(4):410–417. doi: 10.1111/1523-1747.ep12285684. [DOI] [PubMed] [Google Scholar]
  42. Plowman G. D., Green J. M., McDonald V. L., Neubauer M. G., Disteche C. M., Todaro G. J., Shoyab M. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol. 1990 May;10(5):1969–1981. doi: 10.1128/mcb.10.5.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Reaven E. P., Cox A. J. Behavior of adult human skin in organ culture. II. Effects of cellophane tape stripping, temperature, oxygen tension, pH and serum. J Invest Dermatol. 1968 Feb;50(2):118–128. doi: 10.1038/jid.1968.14. [DOI] [PubMed] [Google Scholar]
  44. Rheinwald J. G., Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977 Feb 3;265(5593):421–424. doi: 10.1038/265421a0. [DOI] [PubMed] [Google Scholar]
  45. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  46. SARKANY I., GRICE K., CARON G. A. ORGAN CULTURE OF ADULT HUMAN SKIN. Br J Dermatol. 1965 Feb;77:65–76. doi: 10.1111/j.1365-2133.1965.tb14602.x. [DOI] [PubMed] [Google Scholar]
  47. Schalkwijk J., Steijlen P. M., van Vlijmen-Willems I. M., Oosterling B., Mackie E. J., Verstraeten A. A. Tenascin expression in human dermis is related to epidermal proliferation. Am J Pathol. 1991 Nov;139(5):1143–1150. [PMC free article] [PubMed] [Google Scholar]
  48. Stoscheck C. M., Nanney L. B., King L. E., Jr Quantitative determination of EGF-R during epidermal wound healing. J Invest Dermatol. 1992 Nov;99(5):645–649. doi: 10.1111/1523-1747.ep12668143. [DOI] [PubMed] [Google Scholar]
  49. Sunada H., Magun B. E., Mendelsohn J., MacLeod C. L. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3825–3829. doi: 10.1073/pnas.83.11.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Taipale J., Koli K., Keski-Oja J. Release of transforming growth factor-beta 1 from the pericellular matrix of cultured fibroblasts and fibrosarcoma cells by plasmin and thrombin. J Biol Chem. 1992 Dec 15;267(35):25378–25384. [PubMed] [Google Scholar]
  51. Thomas G., Martin-Pérez J., Siegmann M., Otto A. M. The effect of serum, EGF, PGF2 alpha and insulin on S6 phosphorylation and the initiation of protein and DNA synthesis. Cell. 1982 Aug;30(1):235–242. doi: 10.1016/0092-8674(82)90029-0. [DOI] [PubMed] [Google Scholar]
  52. Voorhees J. J., Duell E. A., Bass L. J., Powell J. A., Harrell E. R. Decreased cyclic AMP in the epidermis of lesions of psoriasis. Arch Dermatol. 1972 May;105(5):695–701. [PubMed] [Google Scholar]
  53. Werner S., Smola H., Liao X., Longaker M. T., Krieg T., Hofschneider P. H., Williams L. T. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994 Nov 4;266(5186):819–822. doi: 10.1126/science.7973639. [DOI] [PubMed] [Google Scholar]
  54. Wille J. J., Jr, Pittelkow M. R., Shipley G. D., Scott R. E. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol. 1984 Oct;121(1):31–44. doi: 10.1002/jcp.1041210106. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES