Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 1;100(5):1305–1319. doi: 10.1172/JCI119644

Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans. A stable isotope study.

M K Hellerstein 1, R A Neese 1, P Linfoot 1, M Christiansen 1, S Turner 1, A Letscher 1
PMCID: PMC508308  PMID: 9276749

Abstract

Fluxes through intrahepatic glucose-producing metabolic pathways were measured in normal humans during overnight or prolonged (60 h) fasting. The glucuronate probe was used to measure the turnover and sources of hepatic UDP-glucose; mass isotopomer distribution analysis from [2-13C1]glycerol for gluconeogenesis and UDP-gluconeogenesis; [U-13C6]glucose for glucose production (GP) and the direct UDP-glucose pathway; and [1-2H1]galactose for UDP-glucose flux and retention in hepatic glycogen. After overnight fasting, GP (fluxes in milligram per kilogram per minute) was 2.19+/-0.09, of which 0.79 (36%) was from gluconeogenesis, 1.40 was from glycogenolysis, 0.30 was retained in glycogen via UDP-gluconeogenesis, and 0.17 entered hepatic UDP-glucose by the direct pathway. Thus, total flux through the gluconeogenic pathway (1.09) represented 54% of extrahepatic glucose disposal (2.02) and the net hepatic glycogen depletion rate was 0.93 (46%). Prolonging [2-13C1]glycerol infusion slowly increased measured fractional gluconeogenesis. In response to prolonged fasting, GP was lower (1. 43+/-0.06) and fractional and absolute gluconeogenesis were higher (78+/-2% and 1.11+/-0.07, respectively). The small but nonzero glycogen input to plasma glucose (0.32+/-0.03) was completely balanced by retained UDP-gluconeogenesis (0.31+/-0.02). Total gluconeogenic pathway flux therefore accounted for 99+/-2% of GP, but with a glycogen cycle interposed. Prolonging isotope infusion to 10 h increased measured fractional gluconeogenesis and UDP-gluconeogenesis to 84-96%, implying replacement of glycogen by gluconeogenic-labeled glucose. Moreover, after glucagon administration, GP (1.65), recovery of [1-2H1]galactose label in plasma glucose (25%) and fractional gluconeogenesis (91%) increased, such that 78% (0.45/0.59) of glycogen released was labeled (i.e., of recent gluconeogenic origin). In conclusion, hepatic gluconeogenic flux into glycogen and glycogen turnover persist during fasting in humans, reconciling inconsistencies in the literature and interposing another locus of control in the normal pathway of GP.

Full Text

The Full Text of this article is available as a PDF (371.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  2. Barrett E. J., Bevilacqua S., DeFronzo R. A., Ferrannini E. Glycogen turnover during refeeding in the postabsorptive dog: implications for the estimation of glycogen formation using tracer methods. Metabolism. 1994 Mar;43(3):285–292. doi: 10.1016/0026-0495(94)90094-9. [DOI] [PubMed] [Google Scholar]
  3. Barrett E. J., Liu Z. Hepatic glucose metabolism and insulin resistance in NIDDM and obesity. Baillieres Clin Endocrinol Metab. 1993 Oct;7(4):875–901. doi: 10.1016/s0950-351x(05)80238-1. [DOI] [PubMed] [Google Scholar]
  4. Clore J. N., Blackard W. G. Suppression of gluconeogenesis after a 3-day fast does not deplete liver glycogen in patients with NIDDM. Diabetes. 1994 Feb;43(2):256–262. doi: 10.2337/diab.43.2.256. [DOI] [PubMed] [Google Scholar]
  5. Consoli A., Kennedy F., Miles J., Gerich J. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J Clin Invest. 1987 Nov;80(5):1303–1310. doi: 10.1172/JCI113206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ekberg K., Chandramouli V., Kumaran K., Schumann W. C., Wahren J., Landau B. R. Gluconeogenesis and glucuronidation in liver in vivo and the heterogeneity of hepatocyte function. J Biol Chem. 1995 Sep 15;270(37):21715–21717. doi: 10.1074/jbc.270.37.21715. [DOI] [PubMed] [Google Scholar]
  7. Hellerstein M. K., Greenblatt D. J., Munro H. N. Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7044–7048. doi: 10.1073/pnas.83.18.7044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hellerstein M. K., Kaempfer S., Reid J. S., Wu K., Shackleton C. H. Rate of glucose entry into hepatic uridine diphosphoglucose by the direct pathway in fasted and fed states in normal humans. Metabolism. 1995 Feb;44(2):172–182. doi: 10.1016/0026-0495(95)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Hellerstein M. K., Letscher A., Schwarz J. M., César D., Shackleton C. H., Turner S., Neese R., Wu K., Bock S., Kaempfer S. Measurement of hepatic Ra UDP-glucose in vivo in rats: relation to glycogen deposition and labeling patterns. Am J Physiol. 1997 Jan;272(1 Pt 1):E155–E162. doi: 10.1152/ajpendo.1997.272.1.E155. [DOI] [PubMed] [Google Scholar]
  10. Hellerstein M. K., Neese R. A. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am J Physiol. 1992 Nov;263(5 Pt 1):E988–1001. doi: 10.1152/ajpendo.1992.263.5.E988. [DOI] [PubMed] [Google Scholar]
  11. Hellerstein M. K., Neese R. A., Schwarz J. M., Turner S., Faix D., Wu K. Altered fluxes responsible for reduced hepatic glucose production and gluconeogenesis by exogenous glucose in rats. Am J Physiol. 1997 Jan;272(1 Pt 1):E163–E172. doi: 10.1152/ajpendo.1997.272.1.E163. [DOI] [PubMed] [Google Scholar]
  12. Henning S. L., Wambolt R. B., Schönekess B. O., Lopaschuk G. D., Allard M. F. Contribution of glycogen to aerobic myocardial glucose utilization. Circulation. 1996 Apr 15;93(8):1549–1555. doi: 10.1161/01.cir.93.8.1549. [DOI] [PubMed] [Google Scholar]
  13. Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
  14. Jahoor F., Peters E. J., Wolfe R. R. The relationship between gluconeogenic substrate supply and glucose production in humans. Am J Physiol. 1990 Feb;258(2 Pt 1):E288–E296. doi: 10.1152/ajpendo.1990.258.2.E288. [DOI] [PubMed] [Google Scholar]
  15. Jenssen T., Nurjhan N., Consoli A., Gerich J. E. Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration. J Clin Invest. 1990 Aug;86(2):489–497. doi: 10.1172/JCI114735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., Kalhan S. C. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996 Jul 15;98(2):378–385. doi: 10.1172/JCI118803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., Kalhan S. C. Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J Clin Invest. 1995 Jan;95(1):172–178. doi: 10.1172/JCI117635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lowenthal D. T., Oie S., Van Stone J. C., Briggs W. A., Levy G. Pharmacokinetics of acetaminophen elimination by anephric patients. J Pharmacol Exp Ther. 1976 Mar;196(3):570–578. [PubMed] [Google Scholar]
  19. Magnusson I., Rothman D. L., Gerard D. P., Katz L. D., Shulman G. I. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes. 1995 Feb;44(2):185–189. doi: 10.2337/diab.44.2.185. [DOI] [PubMed] [Google Scholar]
  20. Magnusson I., Rothman D. L., Jucker B., Cline G. W., Shulman R. G., Shulman G. I. Liver glycogen turnover in fed and fasted humans. Am J Physiol. 1994 May;266(5 Pt 1):E796–E803. doi: 10.1152/ajpendo.1994.266.5.E796. [DOI] [PubMed] [Google Scholar]
  21. Neese R. A., Schwarz J. M., Faix D., Turner S., Letscher A., Vu D., Hellerstein M. K. Gluconeogenesis and intrahepatic triose phosphate flux in response to fasting or substrate loads. Application of the mass isotopomer distribution analysis technique with testing of assumptions and potential problems. J Biol Chem. 1995 Jun 16;270(24):14452–14466. doi: 10.1074/jbc.270.24.14452. [DOI] [PubMed] [Google Scholar]
  22. Nilsson L. H., Fürst P., Hultman E. Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand J Clin Lab Invest. 1973 Dec;32(4):331–337. doi: 10.3109/00365517309084356. [DOI] [PubMed] [Google Scholar]
  23. Nurjhan N., Bucci A., Perriello G., Stumvoll M., Dailey G., Bier D. M., Toft I., Jenssen T. G., Gerich J. E. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest. 1995 Jan;95(1):272–277. doi: 10.1172/JCI117651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peroni O., Large V., Beylot M. Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Am J Physiol. 1995 Sep;269(3 Pt 1):E516–E523. doi: 10.1152/ajpendo.1995.269.3.E516. [DOI] [PubMed] [Google Scholar]
  25. Previs S. F., Fernandez C. A., Yang D., Soloviev M. V., David F., Brunengraber H. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Substrate cycling between glycerol and triose phosphates in liver. J Biol Chem. 1995 Aug 25;270(34):19806–19815. doi: 10.1074/jbc.270.34.19806. [DOI] [PubMed] [Google Scholar]
  26. Ross B., Tange J., Emslie K., Hart S., Smail M., Calder I. Paracetamol metabolism by the isolated perfused rat kidney. Kidney Int. 1980 Nov;18(5):562–570. doi: 10.1038/ki.1980.174. [DOI] [PubMed] [Google Scholar]
  27. Rossetti L., Giaccari A., Barzilai N., Howard K., Sebel G., Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993 Sep;92(3):1126–1134. doi: 10.1172/JCI116681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
  29. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  30. Schumann W. C., Magnusson I., Chandramouli V., Kumaran K., Wahren J., Landau B. R. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis. J Biol Chem. 1991 Apr 15;266(11):6985–6990. [PubMed] [Google Scholar]
  31. Schwarz J. M., Neese R. A., Turner S., Dare D., Hellerstein M. K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J Clin Invest. 1995 Dec;96(6):2735–2743. doi: 10.1172/JCI118342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shikama H., Ui M. Glucose load diverts hepatic gluconeogenic product from glucose to glycogen in vivo. Am J Physiol. 1978 Oct;235(4):E354–E360. doi: 10.1152/ajpendo.1978.235.4.E354. [DOI] [PubMed] [Google Scholar]
  33. Shulman G. I., Cline G., Schumann W. C., Chandramouli V., Kumaran K., Landau B. R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol. 1990 Sep;259(3 Pt 1):E335–E341. doi: 10.1152/ajpendo.1990.259.3.E335. [DOI] [PubMed] [Google Scholar]
  34. Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995 Nov;96(5):2528–2533. doi: 10.1172/JCI118314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WEINMAN E. O., STRISOWER E. H., CHAIKOFF I. L. Conversion of fatty acids to carbohydrate; application of isotopes to this problem and role of the Krebs cycle as a synthetic pathway. Physiol Rev. 1957 Apr;37(2):252–272. doi: 10.1152/physrev.1957.37.2.252. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES