Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1349–1362. doi: 10.1172/JCI119655

Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions.

D Alvaro 1, G Alpini 1, A M Jezequel 1, C Bassotti 1, C Francia 1, F Fraioli 1, R Romeo 1, L Marucci 1, G Le Sage 1, S S Glaser 1, A Benedetti 1
PMCID: PMC508313  PMID: 9294100

Abstract

We investigated, in isolated bile duct units (IBDU) and cholangiocytes isolated from normal rat liver, the occurrence of acetylcholine (ACh) receptors, and the role and mechanisms of ACh in the regulation of the Cl-/HCO3- exchanger activity. The Cl-/HCO3- exchanger activity was evaluated measuring changes in intracellular pH induced by acute Cl- removal/readmission. M3 subtype ACh receptors were detected in IBDU and isolated cholangiocytes by immunofluorescence, immunoelectron microscopy, and reverse transcriptase PCR. M1 subtype ACh receptor mRNA was not detected by reverse transcriptase PCR and M2 subtype was negative by immunofluorescence. ACh (10 microM) showed no effect on the basal activity of the Cl-/HCO3- exchanger. When IBDU were exposed to ACh plus secretin, ACh significantly (P < 0.03) increased the maximal rate of alkalinization after Cl- removal and the maximal rate of recovery after Cl- readmission compared with secretin alone (50 nM), indicating that ACh potentiates the stimulatory effect of secretin on the Cl-/HCO3- exchanger activity. This effect of ACh was blocked by the M3 ACh receptor antagonist, 4-diphenyl-acetoxy-N-(2-chloroethyl)-piperidine (40 nM), by the intracellular Ca2+ chelator, 1,2-bis (2-Aminophenoxy)- ethane-N,N,N', N'-tetraacetic acid acetoxymethylester (50 microM), but not by the protein kinase C antagonist, staurosporine (0.1 microM). Intracellular cAMP levels, in isolated rat cholangiocytes, were unaffected by ACh alone, but were markedly higher after exposure to secretin plus ACh compared with secretin alone (P < 0.01). The ACh-induced potentiation of the secretin effect on both intracellular cAMP levels and the Cl-/HCO3- exchanger activity was individually abolished by two calcineurin inhibitors, FK-506 and cyclosporin A (100 nM). Conclusions: M3 ACh receptors are markedly and diffusively represented in rat cholangiocytes. ACh did not influence the basal activity of the Cl-/HCO3- exchanger, but enhanced the stimulation by secretin of this anion exchanger by a Ca2+-dependent, protein kinase C-insensitive pathway that potentiates the secretin stimulation of adenylyl cyclase. Calcineurin most likely mediates the cross-talk between the calcium and adenylyl cyclase pathways. Since secretin targets cholangiocytes during parasympathetic predominance, coordinated regulation of Cl-/HCO3- exchanger by secretin (cAMP) and ACh (Ca2+) could play a major role in the regulation of ductal bicarbonate excretion in bile just when the bicarbonate requirement in the intestine is maximal.

Full Text

The Full Text of this article is available as a PDF (466.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpini G., Lenzi R., Sarkozi L., Tavoloni N. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J Clin Invest. 1988 Feb;81(2):569–578. doi: 10.1172/JCI113355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alpini G., Lenzi R., Zhai W. R., Liu M. H., Slott P. A., Paronetto F., Tavoloni N. Isolation of a nonparenchymal liver cell fraction enriched in cells with biliary epithelial phenotypes. Gastroenterology. 1989 Nov;97(5):1248–1260. doi: 10.1016/0016-5085(89)91696-x. [DOI] [PubMed] [Google Scholar]
  3. Alpini G., Roberts S., Kuntz S. M., Ueno Y., Gubba S., Podila P. V., LeSage G., LaRusso N. F. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology. 1996 May;110(5):1636–1643. doi: 10.1053/gast.1996.v110.pm8613073. [DOI] [PubMed] [Google Scholar]
  4. Alpini G., Ulrich C. D., 2nd, Phillips J. O., Pham L. D., Miller L. J., LaRusso N. F. Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am J Physiol. 1994 May;266(5 Pt 1):G922–G928. doi: 10.1152/ajpgi.1994.266.5.G922. [DOI] [PubMed] [Google Scholar]
  5. Alvaro D., Cho W. K., Mennone A., Boyer J. L. Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest. 1993 Sep;92(3):1314–1325. doi: 10.1172/JCI116705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alvaro D., Della Guardia P., Bini A., Gigliozzi A., Furfaro S., La Rosa T., Piat C., Capocaccia L. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets. J Clin Invest. 1995 Aug;96(2):665–675. doi: 10.1172/JCI118109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alvaro D., Mennone A., Boyer J. L. Effect of ursodeoxycholic acid on intracellular pH regulation in isolated rat bile duct epithelial cells. Am J Physiol. 1993 Oct;265(4 Pt 1):G783–G791. doi: 10.1152/ajpgi.1993.265.4.G783. [DOI] [PubMed] [Google Scholar]
  8. Amiranoff B. M., Laburthe M. C., Rouyer-Fessard C. M., Demaille J. G., Rosselin G. E. Calmodulin stimulation of adenylate cyclase of intestinal epithelium. Eur J Biochem. 1983 Jan 17;130(1):33–37. doi: 10.1111/j.1432-1033.1983.tb07113.x. [DOI] [PubMed] [Google Scholar]
  9. André C., De Backer J. P., Guillet J. C., Vanderheyden P., Vauquelin G., Strosberg A. D. Purification of muscarinic acetylcholine receptors by affinity chromatography. EMBO J. 1983;2(4):499–504. doi: 10.1002/j.1460-2075.1983.tb01453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. André C., Guillet J. G., De Backer J. P., Vanderheyden P., Hoebeke J., Strosberg A. D. Monoclonal antibodies against the native or denatured forms of muscarinic acetylcholine receptors. EMBO J. 1984 Jan;3(1):17–21. doi: 10.1002/j.1460-2075.1984.tb01755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Antoni F. A., Barnard R. J., Shipston M. J., Smith S. M., Simpson J., Paterson J. M. Calcineurin feedback inhibition of agonist-evoked cAMP formation. J Biol Chem. 1995 Nov 24;270(47):28055–28061. doi: 10.1074/jbc.270.47.28055. [DOI] [PubMed] [Google Scholar]
  12. Barlow R. B., Berry K. J., Glenton P. A., Nilolaou N. M., Soh K. S. A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 degrees C and in ileum at 29 degrees C and 37 degrees C. Br J Pharmacol. 1976 Dec;58(4):613–620. doi: 10.1111/j.1476-5381.1976.tb08631.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baukal A. J., Hunyady L., Catt K. J., Balla T. Evidence for participation of calcineurin in potentiation of agonist-stimulated cyclic AMP formation by the calcium-mobilizing hormone, angiotensin II. J Biol Chem. 1994 Oct 7;269(40):24546–24549. [PubMed] [Google Scholar]
  14. Benedetti A., Marucci L., Bassotti C., Mancini R., Contucci S., Jezequel A. M., Orlandi F. Tubulovesicular transcytotic pathway in rat biliary epithelium: a study in perfused liver and in isolated intrahepatic bile duct. Hepatology. 1993 Aug;18(2):422–432. [PubMed] [Google Scholar]
  15. Bonner T. I., Buckley N. J., Young A. C., Brann M. R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987 Jul 31;237(4814):527–532. doi: 10.1126/science.3037705. [DOI] [PubMed] [Google Scholar]
  16. Caldwell K. K., Boyajian C. L., Cooper D. M. The effects of Ca2+ and calmodulin on adenylyl cyclase activity in plasma membranes derived from neural and non-neural cells. Cell Calcium. 1992 Feb;13(2):107–121. doi: 10.1016/0143-4160(92)90004-c. [DOI] [PubMed] [Google Scholar]
  17. Cali J. J., Zwaagstra J. C., Mons N., Cooper D. M., Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem. 1994 Apr 22;269(16):12190–12195. [PubMed] [Google Scholar]
  18. Calnek D., Quaroni A. Differential localization by in situ hybridization of distinct keratin mRNA species during intestinal epithelial cell development and differentiation. Differentiation. 1993 Jun;53(2):95–104. doi: 10.1111/j.1432-0436.1993.tb00649.x. [DOI] [PubMed] [Google Scholar]
  19. Caulfield M. P. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993 Jun;58(3):319–379. doi: 10.1016/0163-7258(93)90027-b. [DOI] [PubMed] [Google Scholar]
  20. Choi E. J., Xia Z., Storm D. R. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry. 1992 Jul 21;31(28):6492–6498. doi: 10.1021/bi00143a019. [DOI] [PubMed] [Google Scholar]
  21. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  22. Cooperstein S. J., Watkins D. T. Ca(++)-calmodulin-dependent phosphorylation and dephosphorylation of rat parotid secretion granules. Biochem Biophys Res Commun. 1995 Oct 4;215(1):75–81. doi: 10.1006/bbrc.1995.2435. [DOI] [PubMed] [Google Scholar]
  23. Dörje F., Levey A. I., Brann M. R. Immunological detection of muscarinic receptor subtype proteins (m1-m5) in rabbit peripheral tissues. Mol Pharmacol. 1991 Oct;40(4):459–462. [PubMed] [Google Scholar]
  24. Elsing C., Hübner C., Fitscher B. A., Kassner A., Stremmel W. Muscarinic acetylcholine receptor stimulation of biliary epithelial cells and its effect on bile secretion in the isolated perfused liver [corrected]. Hepatology. 1997 Apr;25(4):804–813. doi: 10.1002/hep.510250404. [DOI] [PubMed] [Google Scholar]
  25. Felder C. C., Kanterman R. Y., Ma A. L., Axelrod J. A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J Biol Chem. 1989 Dec 5;264(34):20356–20362. [PubMed] [Google Scholar]
  26. Groblewski G. E., Wagner A. C., Williams J. A. Cyclosporin A inhibits Ca2+/calmodulin-dependent protein phosphatase and secretion in pancreatic acinar cells. J Biol Chem. 1994 May 27;269(21):15111–15117. [PubMed] [Google Scholar]
  27. Harrison J. K., Hewlett G. H., Gnegy M. E. Regulation of calmodulin-sensitive adenylate cyclase by the stimulatory G-protein, Gs. J Biol Chem. 1989 Sep 25;264(27):15880–15885. [PubMed] [Google Scholar]
  28. Ishii M., Vroman B., LaRusso N. F. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology. 1989 Nov;97(5):1236–1247. doi: 10.1016/0016-5085(89)91695-8. [DOI] [PubMed] [Google Scholar]
  29. Kaminski D. L., Dorighi J., Jellinek M. Effect of electrical vagal stimulation on canine hepatic bile flow. Am J Physiol. 1974 Aug;227(2):487–493. doi: 10.1152/ajplegacy.1974.227.2.487. [DOI] [PubMed] [Google Scholar]
  30. Kato A., Gores G. J., LaRusso N. F. Secretin stimulates exocytosis in isolated bile duct epithelial cells by a cyclic AMP-mediated mechanism. J Biol Chem. 1992 Aug 5;267(22):15523–15529. [PubMed] [Google Scholar]
  31. Larsson O., Olgart L. The enhancement of carbachol-induced salivary secretion by VIP and CGRP in rat parotid gland is mimicked by forskolin. Acta Physiol Scand. 1989 Oct;137(2):231–236. doi: 10.1111/j.1748-1716.1989.tb08743.x. [DOI] [PubMed] [Google Scholar]
  32. Lesage G., Glaser S. S., Gubba S., Robertson W. E., Phinizy J. L., Lasater J., Rodgers R. E., Alpini G. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology. 1996 Dec;111(6):1633–1644. doi: 10.1016/s0016-5085(96)70027-6. [DOI] [PubMed] [Google Scholar]
  33. Maeda A., Kubo T., Mishina M., Numa S. Tissue distribution of mRNAs encoding muscarinic acetylcholine receptor subtypes. FEBS Lett. 1988 Nov 7;239(2):339–342. doi: 10.1016/0014-5793(88)80947-5. [DOI] [PubMed] [Google Scholar]
  34. Martínez-Ansó E., Castillo J. E., Díez J., Medina J. F., Prieto J. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology. 1994 Jun;19(6):1400–1406. [PubMed] [Google Scholar]
  35. Mennone A., Alvaro D., Cho W., Boyer J. L. Isolation of small polarized bile duct units. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6527–6531. doi: 10.1073/pnas.92.14.6527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morris R. Modes of action of FK506, cyclosporin A, and rapamycin. Transplant Proc. 1994 Dec;26(6):3272–3275. [PubMed] [Google Scholar]
  37. Nathanson M. H., Burgstahler A. D., Mennone A., Boyer J. L. Characterization of cytosolic Ca2+ signaling in rat bile duct epithelia. Am J Physiol. 1996 Jul;271(1 Pt 1):G86–G96. doi: 10.1152/ajpgi.1996.271.1.G86. [DOI] [PubMed] [Google Scholar]
  38. Pan G. Z., Collen M. J., Gardner J. D. Action of cholera toxin on dispersed acini from rat pancreas. Post-receptor modulation involving cyclic AMP and calcium. Biochim Biophys Acta. 1982 Jul 22;720(4):338–345. doi: 10.1016/0167-4889(82)90110-0. [DOI] [PubMed] [Google Scholar]
  39. Pass M., Heath T. Effect of electrical stimulation of the vagus nerves on bile secretion in Anaesthetized sheep. Aust J Biol Sci. 1976 Oct;29(4):351–355. doi: 10.1071/bi9760351. [DOI] [PubMed] [Google Scholar]
  40. Paterson J. M., Smith S. M., Harmar A. J., Antoni F. A. Control of a novel adenylyl cyclase by calcineurin. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1000–1008. doi: 10.1006/bbrc.1995.2385. [DOI] [PubMed] [Google Scholar]
  41. Peralta E. G., Winslow J. W., Peterson G. L., Smith D. H., Ashkenazi A., Ramachandran J., Schimerlik M. I., Capon D. J. Primary structure and biochemical properties of an M2 muscarinic receptor. Science. 1987 May 1;236(4801):600–605. doi: 10.1126/science.3107123. [DOI] [PubMed] [Google Scholar]
  42. Raufman J. P., Lin J., Raffaniello R. D. Calcineurin mediates calcium-induced potentiation of adenylyl cyclase activity in dispersed chief cells from guinea pig stomach. Further evidence for cross-talk between signal transduction pathways that regulate pepsinogen secretion. J Biol Chem. 1996 Aug 16;271(33):19877–19882. doi: 10.1074/jbc.271.33.19877. [DOI] [PubMed] [Google Scholar]
  43. Rutenburg A. M., Kim H., Fischbein J. W., Hanker J. S., Wasserkrug H. L., Seligman A. M. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem. 1969 Aug;17(8):517–526. doi: 10.1177/17.8.517. [DOI] [PubMed] [Google Scholar]
  44. Salter R. S., Krinks M. H., Klee C. B., Neer E. J. Calmodulin activates the isolated catalytic unit of brain adenylate cyclase. J Biol Chem. 1981 Oct 10;256(19):9830–9833. [PubMed] [Google Scholar]
  45. Sato K., Sato F. Role of calcium in cholinergic and adrenergic mechanisms of eccrine sweat secretion. Am J Physiol. 1981 Sep;241(3):C113–C120. doi: 10.1152/ajpcell.1981.241.3.C113. [DOI] [PubMed] [Google Scholar]
  46. Schreiber S. L., Crabtree G. R. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992 Apr;13(4):136–142. doi: 10.1016/0167-5699(92)90111-J. [DOI] [PubMed] [Google Scholar]
  47. Takahashi T., Lasker J. M., Rosman A. S., Lieber C. S. Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology. 1993 Feb;17(2):236–245. [PubMed] [Google Scholar]
  48. Tang W. J., Krupinski J., Gilman A. G. Expression and characterization of calmodulin-activated (type I) adenylylcyclase. J Biol Chem. 1991 May 5;266(13):8595–8603. [PubMed] [Google Scholar]
  49. Tietz P. S., Alpini G., Pham L. D., Larusso N. F. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am J Physiol. 1995 Jul;269(1 Pt 1):G110–G118. doi: 10.1152/ajpgi.1995.269.1.G110. [DOI] [PubMed] [Google Scholar]
  50. Warhurst G., Fogg K. E., Higgs N. B., Tonge A., Grundy J. Ca(2+)-mobilising agonists potentiate forskolin- and VIP-stimulated cAMP production in human colonic cell line, HT29-cl.19A: role of [Ca2+]i and protein kinase C. Cell Calcium. 1994 Feb;15(2):162–174. doi: 10.1016/0143-4160(94)90055-8. [DOI] [PubMed] [Google Scholar]
  51. Weigert N., Schaffer K., Wegner U., Schusdziarra V., Classen M., Schepp W. Functional characterization of a muscarinic receptor stimulating gastrin release from rabbit antral G-cells in primary culture. Eur J Pharmacol. 1994 Nov 3;264(3):337–344. doi: 10.1016/0014-2999(94)90671-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES