Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1373–1382. doi: 10.1172/JCI119657

Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

P C Churchill 1, M C Churchill 1, A K Bidani 1, K A Griffin 1, M Picken 1, M Pravenec 1, V Kren 1, E St Lezin 1, J M Wang 1, N Wang 1, T W Kurtz 1
PMCID: PMC508315  PMID: 9294102

Abstract

To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat.

Full Text

The Full Text of this article is available as a PDF (770.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidani A. K., Griffin K. A., Picken M., Lansky D. M. Continuous telemetric blood pressure monitoring and glomerular injury in the rat remnant kidney model. Am J Physiol. 1993 Sep;265(3 Pt 2):F391–F398. doi: 10.1152/ajprenal.1993.265.3.F391. [DOI] [PubMed] [Google Scholar]
  2. Bidani A. K., Griffin K. A., Plott W., Schwartz M. M. Renal ablation acutely transforms 'benign' hypertension to 'malignant' nephrosclerosis in hypertensive rats. Hypertension. 1994 Sep;24(3):309–316. doi: 10.1161/01.hyp.24.3.309. [DOI] [PubMed] [Google Scholar]
  3. Brandis A., Bianchi G., Reale E., Helmchen U., Kühn K. Age-dependent glomerulosclerosis and proteinuria occurring in rats of the Milan normotensive strain and not in rats of the Milan hypertensive strain. Lab Invest. 1986 Aug;55(2):234–243. [PubMed] [Google Scholar]
  4. Brazy P. C., Stead W. W., Fitzwilliam J. F. Progression of renal insufficiency: role of blood pressure. Kidney Int. 1989 Feb;35(2):670–674. doi: 10.1038/ki.1989.37. [DOI] [PubMed] [Google Scholar]
  5. Brown D. M., Provoost A. P., Daly M. J., Lander E. S., Jacob H. J. Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet. 1996 Jan;12(1):44–51. doi: 10.1038/ng0196-44. [DOI] [PubMed] [Google Scholar]
  6. Churchill M., Churchill P. C., Schwartz M., Bidani A., McDonald F. Reversible compensatory hypertrophy in transplanted brown Norway rat kidneys. Kidney Int. 1991 Jul;40(1):13–20. doi: 10.1038/ki.1991.173. [DOI] [PubMed] [Google Scholar]
  7. Churchill M., Kline R., Schwartz M., Bidani A., Churchill P. Kidney transplants in cyclosporine-treated Sprague-Dawley rats. Transplantation. 1990 Jan;49(1):8–13. doi: 10.1097/00007890-199001000-00002. [DOI] [PubMed] [Google Scholar]
  8. Churchill P. C., Churchill M. C., Bidani A. K., Rabito S. F. Kallikrein excretion in Dahl salt-sensitive and salt-resistant rats with native and transplanted kidneys. Am J Physiol. 1995 Nov;269(5 Pt 2):F710–F717. doi: 10.1152/ajprenal.1995.269.5.F710. [DOI] [PubMed] [Google Scholar]
  9. Churchill P., Churchill M., Bidani A., Dunbar J., Jr Streptozotocin-induced renal hemodynamic changes in isogenic Lewis rats: a kidney transplant study. Am J Physiol. 1993 Jan;264(1 Pt 2):F100–F105. doi: 10.1152/ajprenal.1993.264.1.F100. [DOI] [PubMed] [Google Scholar]
  10. Cusi D., Tripodi G., Casari G., Robba C., Bollini P., Merati G., Bianchi G. Genetics of renal damage in primary hypertension. Am J Kidney Dis. 1993 May;21(5 Suppl 2):2–9. doi: 10.1016/0272-6386(93)70092-d. [DOI] [PubMed] [Google Scholar]
  11. DAHL L. K., HEINE M., TASSINARI L. EFFECTS OF CHRONIC EXCESS SALT INGESTION. ROLE OF GENETIC FACTORS IN BOTH DOCA-SALT AND RENAL HYPERTENSION. J Exp Med. 1963 Oct 1;118:605–617. doi: 10.1084/jem.118.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ely D. L., Turner M. E. Hypertension in the spontaneously hypertensive rat is linked to the Y chromosome. Hypertension. 1990 Sep;16(3):277–281. doi: 10.1161/01.hyp.16.3.277. [DOI] [PubMed] [Google Scholar]
  13. Freedman B. I., Iskandar S. S., Appel R. G. The link between hypertension and nephrosclerosis. Am J Kidney Dis. 1995 Feb;25(2):207–221. doi: 10.1016/0272-6386(95)90001-2. [DOI] [PubMed] [Google Scholar]
  14. Hall C. E., Ayachi S., Hall O. Hypertension following adrenal enucleation and its absence during desoxycorticosterone treatment in Long-Evans rats. Endocrinology. 1973 Apr;92(4):1175–1181. doi: 10.1210/endo-92-4-1175. [DOI] [PubMed] [Google Scholar]
  15. Hampton J. A., Bernardo D. A., Khan N. A., Lacher D. A., Rapp J. P., Gohara A. F., Goldblatt P. J. Morphometric evaluation of the renal arterial system of Dahl salt-sensitive and salt-resistant rats on a high salt diet. II. Interlobular arteries and intralobular arterioles. Lab Invest. 1989 Jun;60(6):839–846. [PubMed] [Google Scholar]
  16. Holstein-Rathlou N. H., He J., Wagner A. J., Marsh D. J. Patterns of blood pressure variability in normotensive and hypertensive rats. Am J Physiol. 1995 Nov;269(5 Pt 2):R1230–R1239. doi: 10.1152/ajpregu.1995.269.5.R1230. [DOI] [PubMed] [Google Scholar]
  17. Klahr S., Schreiner G., Ichikawa I. The progression of renal disease. N Engl J Med. 1988 Jun 23;318(25):1657–1666. doi: 10.1056/NEJM198806233182505. [DOI] [PubMed] [Google Scholar]
  18. Ouchi Y., Share L., Crofton J. T., Iitake K., Brooks D. P. Sex difference in the development of deoxycorticosterone-salt hypertension in the rat. Hypertension. 1987 Feb;9(2):172–177. doi: 10.1161/01.hyp.9.2.172. [DOI] [PubMed] [Google Scholar]
  19. Pravenec M., Klír P., Kren V., Zicha J., Kunes J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens. 1989 Mar;7(3):217–221. [PubMed] [Google Scholar]
  20. Rostand S. G., Kirk K. A., Rutsky E. A., Pate B. A. Racial differences in the incidence of treatment for end-stage renal disease. N Engl J Med. 1982 May 27;306(21):1276–1279. doi: 10.1056/NEJM198205273062106. [DOI] [PubMed] [Google Scholar]
  21. Rubattu S., Volpe M., Kreutz R., Ganten U., Ganten D., Lindpaintner K. Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat Genet. 1996 Aug;13(4):429–434. doi: 10.1038/ng0896-429. [DOI] [PubMed] [Google Scholar]
  22. Schwartz M. M., Churchill M., Bidani A., Churchill P. C. Reversible compensatory hypertrophy in rat kidneys: morphometric characterization. Kidney Int. 1993 Mar;43(3):610–614. doi: 10.1038/ki.1993.89. [DOI] [PubMed] [Google Scholar]
  23. Sciotti V., Gallant S. Resistance to mineralocorticoid-induced hypertensive vascular disease. Hypertension. 1987 Aug;10(2):176–180. doi: 10.1161/01.hyp.10.2.176. [DOI] [PubMed] [Google Scholar]
  24. Selye H., Hall C. E., Rowley E. M. Malignant Hypertension Produced by Treatment with Desoxycorticosterone Acetate and Sodium Chloride. Can Med Assoc J. 1943 Aug;49(2):88–92. [PMC free article] [PubMed] [Google Scholar]
  25. Selye H., Pentz E. I. Pathogenetical Correlations between Periarteritis Nodosa, Renal Hypertension and Rheumatic Lesions. Can Med Assoc J. 1943 Oct;49(4):264–272. [PMC free article] [PubMed] [Google Scholar]
  26. Sesoko S., Pegram B. L., Willis G. W., Frohlich E. D. DOCA-salt induced malignant hypertension in spontaneously hypertensive rats. J Hypertens. 1984 Feb;2(1):49–54. doi: 10.1097/00004872-198402000-00009. [DOI] [PubMed] [Google Scholar]
  27. Sterzel R. B., Luft F. C., Gao Y., Schnermann J., Briggs J. P., Ganten D., Waldherr R., Schnabel E., Kriz W. Renal disease and the development of hypertension in salt-sensitive Dahl rats. Kidney Int. 1988 Jun;33(6):1119–1129. doi: 10.1038/ki.1988.120. [DOI] [PubMed] [Google Scholar]
  28. Tierney W. M., McDonald C. J., Luft F. C. Renal disease in hypertensive adults: effect of race and type II diabetes mellitus. Am J Kidney Dis. 1989 Jun;13(6):485–493. doi: 10.1016/s0272-6386(89)80006-x. [DOI] [PubMed] [Google Scholar]
  29. Walker W. G. Hypertension-related renal injury: a major contributor to end-stage renal disease. Am J Kidney Dis. 1993 Jul;22(1):164–173. doi: 10.1016/s0272-6386(12)70183-x. [DOI] [PubMed] [Google Scholar]
  30. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  31. Weening J. J., Beukers J. J., Grond J., Elema J. D. Genetic factors in focal segmental glomerulosclerosis. Kidney Int. 1986 Apr;29(4):789–798. doi: 10.1038/ki.1986.68. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES