Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1394–1399. doi: 10.1172/JCI119659

Creation of an In vivo cytosensor using engineered mesangial cells. Automatic sensing of glomerular inflammation controls transgene activity.

M Kitamura 1, H Kawachi 1
PMCID: PMC508317  PMID: 9294104

Abstract

Automatic control over exogenous gene expression in response to the activity of disease is a crucial hurdle for gene transfer-based therapies. Towards achieving this goal, we created a "cytosensor" that perceives local inflammatory states and subsequently regulates foreign gene expression. alpha-Smooth muscle actin is known to be expressed in glomerular mesangial cells exclusively in pathologic situations. CArG box element, the crucial regulatory sequence of the alpha-smooth muscle actin promoter, was used as a sensor for glomerular inflammation. Rat mesangial cells were stably transfected with an expression plasmid that introduces a beta-galactosidase gene under the control of CArG box elements. In vitro, the established cells expressed beta-galactosidase exclusively after stimulation with serum. To examine whether the cells are able to automatically control transgene activity in vivo, serum-stimulated or unstimulated cells were transferred into normal rat glomeruli or glomeruli subjected to anti-Thy 1 glomerulonephritis. When stimulated cells were transferred into the normal glomeruli, beta-galactosidase expression was switched off in vivo within 3 d. In contrast, when unstimulated cells were transferred into the nephritic glomeruli, transgene expression was substantially induced. These data indicate the feasibility of using the CArG box element as a molecular sensor for glomerular injury. In the context of advanced forms of gene therapy, this approach provides a novel concept for automatic regulation of local transgene expression where the transgene is required to be activated during inflammation and deactivated when the inflammation has subsided.

Full Text

The Full Text of this article is available as a PDF (252.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpers C. E., Hudkins K. L., Gown A. M., Johnson R. J. Enhanced expression of "muscle-specific" actin in glomerulonephritis. Kidney Int. 1992 May;41(5):1134–1142. doi: 10.1038/ki.1992.173. [DOI] [PubMed] [Google Scholar]
  2. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  3. Aoyagi T., Izumo S. Mapping of the pressure response element of the c-fos gene by direct DNA injection into beating hearts. J Biol Chem. 1993 Dec 25;268(36):27176–27179. [PubMed] [Google Scholar]
  4. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  5. Blank R. S., McQuinn T. C., Yin K. C., Thompson M. M., Takeyasu K., Schwartz R. J., Owens G. K. Elements of the smooth muscle alpha-actin promoter required in cis for transcriptional activation in smooth muscle. Evidence for cell type-specific regulation. J Biol Chem. 1992 Jan 15;267(2):984–989. [PubMed] [Google Scholar]
  6. Border W. A., Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest. 1992 Jul;90(1):1–7. doi: 10.1172/JCI115821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson J. A., Yan Z., Booth F. W., Coleman M. E., Schwartz R. J., Stump C. S. Regulation of skeletal alpha-actin promoter in young chickens during hypertrophy caused by stretch overload. Am J Physiol. 1995 Apr;268(4 Pt 1):C918–C924. doi: 10.1152/ajpcell.1995.268.4.C918. [DOI] [PubMed] [Google Scholar]
  8. Datta R., Taneja N., Sukhatme V. P., Qureshi S. A., Weichselbaum R., Kufe D. W. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2419–2422. doi: 10.1073/pnas.90.6.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elger M., Drenckhahn D., Nobiling R., Mundel P., Kriz W. Cultured rat mesangial cells contain smooth muscle alpha-actin not found in vivo. Am J Pathol. 1993 Feb;142(2):497–509. [PMC free article] [PubMed] [Google Scholar]
  10. Floege J., Burns M. W., Alpers C. E., Yoshimura A., Pritzl P., Gordon K., Seifert R. A., Bowen-Pope D. F., Couser W. G., Johnson R. J. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 1992 Feb;41(2):297–309. doi: 10.1038/ki.1992.42. [DOI] [PubMed] [Google Scholar]
  11. Floege J., Johnson R. J., Gordon K., Iida H., Pritzl P., Yoshimura A., Campbell C., Alpers C. E., Couser W. G. Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int. 1991 Sep;40(3):477–488. doi: 10.1038/ki.1991.235. [DOI] [PubMed] [Google Scholar]
  12. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iida H., Seifert R., Alpers C. E., Gronwald R. G., Phillips P. E., Pritzl P., Gordon K., Gown A. M., Ross R., Bowen-Pope D. F. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6560–6564. doi: 10.1073/pnas.88.15.6560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson R. J., Alpers C. E., Yoshimura A., Lombardi D., Pritzl P., Floege J., Schwartz S. M. Renal injury from angiotensin II-mediated hypertension. Hypertension. 1992 May;19(5):464–474. doi: 10.1161/01.hyp.19.5.464. [DOI] [PubMed] [Google Scholar]
  15. Johnson R. J., Floege J., Couser W. G., Alpers C. E. Role of platelet-derived growth factor in glomerular disease. J Am Soc Nephrol. 1993 Aug;4(2):119–128. doi: 10.1681/ASN.V42119. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. J., Floege J., Yoshimura A., Iida H., Couser W. G., Alpers C. E. The activated mesangial cell: a glomerular "myofibroblast"? J Am Soc Nephrol. 1992 Apr;2(10 Suppl):S190–S197. doi: 10.1681/ASN.V210s190. [DOI] [PubMed] [Google Scholar]
  17. Johnson R. J., Iida H., Alpers C. E., Majesky M. W., Schwartz S. M., Pritzi P., Gordon K., Gown A. M. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 1991 Mar;87(3):847–858. doi: 10.1172/JCI115089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawachi H., Orikasa M., Matsui K., Iwanaga T., Toyabe S., Oite T., Shimizu F. Epitope-specific induction of mesangial lesions with proteinuria by a MoAb against mesangial cell surface antigen. Clin Exp Immunol. 1992 Jun;88(3):399–404. doi: 10.1111/j.1365-2249.1992.tb06461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim J. H., Bushel P. R., Kumar C. C. Smooth muscle alpha-actin promoter activity is induced by serum stimulation of fibroblast cells. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1115–1121. doi: 10.1006/bbrc.1993.1165. [DOI] [PubMed] [Google Scholar]
  20. Kitamura M., Burton S., English J., Kawachi H., Fine L. G. Transfer of a mutated gene encoding active transforming growth factor-beta 1 suppresses mitogenesis and IL-1 response in the glomerulus. Kidney Int. 1995 Dec;48(6):1747–1757. doi: 10.1038/ki.1995.473. [DOI] [PubMed] [Google Scholar]
  21. Kitamura M., Burton S., Yokoo T., Fine L. G. Gene delivery into the renal glomerulus by transfer of genetically engineered, autologous mesangial cells. Exp Nephrol. 1996 Jan-Feb;4(1):56–59. [PubMed] [Google Scholar]
  22. Kitamura M. Creation of a reversible on/off system for site-specific in vivo control of exogenous gene activity in the renal glomerulus. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7387–7391. doi: 10.1073/pnas.93.14.7387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kitamura M. Gene delivery into the glomerulus via mesangial cell vectors. Exp Nephrol. 1997 Mar-Apr;5(2):118–125. [PubMed] [Google Scholar]
  24. Kitamura M., Mitarai T., Maruyama N., Nagasawa R., Yoshida H., Sakai O. Mesangial cell behavior in a three-dimensional extracellular matrix. Kidney Int. 1991 Oct;40(4):653–661. doi: 10.1038/ki.1991.257. [DOI] [PubMed] [Google Scholar]
  25. Kitamura M., Shirasawa T., Maruyama N. Gene transfer of metalloproteinase transin induces aberrant behavior of cultured mesangial cells. Kidney Int. 1994 Jun;45(6):1580–1586. doi: 10.1038/ki.1994.208. [DOI] [PubMed] [Google Scholar]
  26. Kitamura M., Sütö T., Yokoo T., Shimizu F., Fine L. G. Transforming growth factor-beta 1 is the predominant paracrine inhibitor of macrophage cytokine synthesis produced by glomerular mesangial cells . J Immunol. 1996 Apr 15;156(8):2964–2971. [PubMed] [Google Scholar]
  27. Kitamura M., Taylor S., Unwin R., Burton S., Shimizu F., Fine L. G. Gene transfer into the rat renal glomerulus via a mesangial cell vector: site-specific delivery, in situ amplification, and sustained expression of an exogenous gene in vivo. J Clin Invest. 1994 Aug;94(2):497–505. doi: 10.1172/JCI117361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klünder I., Hülser D. F. Beta-galactosidase activity in transfected Ltk- cells is differentially regulated in monolayer and in spheroid cultures. Exp Cell Res. 1993 Jul;207(1):155–162. doi: 10.1006/excr.1993.1175. [DOI] [PubMed] [Google Scholar]
  29. Lee T. C., Shi Y., Schwartz R. J. Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal alpha-actin transcription in embryonic myoblasts. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9814–9818. doi: 10.1073/pnas.89.20.9814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. MacPherson B. R., Leslie K. O., Lizaso K. V., Schwarz J. E. Contractile cells of the kidney in primary glomerular disorders: an immunohistochemical study using an anti-alpha-smooth muscle actin monoclonal antibody. Hum Pathol. 1993 Jul;24(7):710–716. doi: 10.1016/0046-8177(93)90006-3. [DOI] [PubMed] [Google Scholar]
  31. Mar J. H., Ordahl C. P. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6404–6408. doi: 10.1073/pnas.85.17.6404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marais R., Wynne J., Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993 Apr 23;73(2):381–393. doi: 10.1016/0092-8674(93)90237-k. [DOI] [PubMed] [Google Scholar]
  33. Marsen T. A., Schramek H., Dunn M. J. Renal actions of endothelin: linking cellular signaling pathways to kidney disease. Kidney Int. 1994 Feb;45(2):336–344. doi: 10.1038/ki.1994.43. [DOI] [PubMed] [Google Scholar]
  34. Meinkoth J., Alberts A. S., Feramisco J. R. Construction of mammalian cell lines with indicator genes driven by regulated promoters. Ciba Found Symp. 1990;150:47–56. doi: 10.1002/9780470513927.ch4. [DOI] [PubMed] [Google Scholar]
  35. Min B. H., Foster D. N., Strauch A. R. The 5'-flanking region of the mouse vascular smooth muscle alpha-actin gene contains evolutionarily conserved sequence motifs within a functional promoter. J Biol Chem. 1990 Sep 25;265(27):16667–16675. [PubMed] [Google Scholar]
  36. Minty A., Kedes L. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol Cell Biol. 1986 Jun;6(6):2125–2136. doi: 10.1128/mcb.6.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Okuda S., Languino L. R., Ruoslahti E., Border W. A. Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest. 1990 Aug;86(2):453–462. doi: 10.1172/JCI114731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rosenberg M. E., Smith L. J., Correa-Rotter R., Hostetter T. H. The paradox of the renin-angiotensin system in chronic renal disease. Kidney Int. 1994 Feb;45(2):403–410. doi: 10.1038/ki.1994.52. [DOI] [PubMed] [Google Scholar]
  39. Rupprecht H. D., Sukhatme V. P., Lacy J., Sterzel R. B., Coleman D. L. PDGF-induced Egr-1 expression in rat mesangial cells is mediated through upstream serum response elements. Am J Physiol. 1993 Sep;265(3 Pt 2):F351–F360. doi: 10.1152/ajprenal.1993.265.3.F351. [DOI] [PubMed] [Google Scholar]
  40. Rupprecht H. D., Sukhatme V. P., Rupprecht A. P., Sterzel R. B., Coleman D. L. Serum response elements mediate protein kinase C dependent transcriptional induction of early growth response gene-1 by arginine vasopressin in rat mesangial cells. J Cell Physiol. 1994 May;159(2):311–323. doi: 10.1002/jcp.1041590214. [DOI] [PubMed] [Google Scholar]
  41. Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993 Apr;12(4):1681–1692. doi: 10.1002/j.1460-2075.1993.tb05813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Simonson M. S., Walsh K., Kumar C. C., Bushel P., Herman W. H. Two proximal CArG elements regulate SM alpha-actin promoter, a genetic marker of activated phenotype of mesangial cells. Am J Physiol. 1995 Apr;268(4 Pt 2):F760–F769. doi: 10.1152/ajprenal.1995.268.4.F760. [DOI] [PubMed] [Google Scholar]
  43. Simonson M. S., Wang Y., Herman W. H. Nuclear signaling by endothelin-1 requires Src protein-tyrosine kinases. J Biol Chem. 1996 Jan 5;271(1):77–82. doi: 10.1074/jbc.271.1.77. [DOI] [PubMed] [Google Scholar]
  44. Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell. 1986 Aug 15;46(4):567–574. doi: 10.1016/0092-8674(86)90882-2. [DOI] [PubMed] [Google Scholar]
  45. Treisman R. The SRE: a growth factor responsive transcriptional regulator. Semin Cancer Biol. 1990 Feb;1(1):47–58. [PubMed] [Google Scholar]
  46. Treisman R. The serum response element. Trends Biochem Sci. 1992 Oct;17(10):423–426. doi: 10.1016/0968-0004(92)90013-y. [DOI] [PubMed] [Google Scholar]
  47. Varley A. W., Coulthard M. G., Meidell R. S., Gerard R. D., Munford R. S. Inflammation-induced recombinant protein expression in vivo using promoters from acute-phase protein genes. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5346–5350. doi: 10.1073/pnas.92.12.5346. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES