Abstract
Smooth muscle cells (SMC) of the vascular wall, bladder, myometrium, and gastrointestinal and respiratory tracts retain the ability to proliferate postnatally, which enables adaptive responses to injury, hormonal, or mechanical stimulation. SMC growth is regulated by a number of mesenchymal growth factors, including insulin-like growth factor I (IGF-I). To explore the function of IGF-I on SMC in vivo, the mouse SMC alpha-actin promoter fragment SMP8 (-1074 bp, 63 bp of 5'UT and 2.5 kb of intron 1) was cloned upstream of rat IGF-I cDNA, and the fusion gene microinjected to fertilized eggs of the FVB-N mouse strain. Mating of hemizygous mice with controls produced about 50% transgenic offspring, with equal sex distribution. Transgenic IGF-I mRNA expression was confined to SMC-containing tissues, with the following hierarchy: bladder > stomach > aorta = uterus > intestine. There was no transgene expression in skeletal muscle, heart, or liver. Radioimmunoassayable IGF-I content was increased by 3.5- to 4-fold in aorta, and by almost 10-fold in bladder of transgenic mice at 5 and 10 wk, with no change in plasma IGF-I levels. Wet weight of bladder, stomach, intestine, uterus, and aorta was selectively increased, with no change in total body or carcass weight of transgenic animals. In situ hybridization showed that transgene expression was exquisitely targeted to the smooth muscle layers of the arteries, veins, bladder, ureter, stomach, intestine, and uterus. Paracrine overproduction of IGF-I resulted in hyperplasia of the muscular layers of these tissues, manifesting in remarkably different phenotypes in the various SMC beds. Whereas the muscular layer of the bladder and stomach exhibited a concentric thickening, the SMC of the intestine and uterus grew in a longitudinal fashion, resulting in a marked lengthening of the small bowel and of the uterine horns. This report describes the first successful targeting of expression of any functional protein capable of modifying the phenotype of SMC in transgenic mice. IGF-I stimulates SMC hyperplasia, leading to distinct patterns of organ remodeling in the different tissue environments.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babai F., Musevi-Aghdam J., Schurch W., Royal A., Gabbiani G. Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos I. Skeletal muscle. Differentiation. 1990 Aug;44(2):132–142. doi: 10.1111/j.1432-0436.1990.tb00546.x. [DOI] [PubMed] [Google Scholar]
- Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
- Bondy C. A., Werner H., Roberts C. T., Jr, LeRoith D. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol. 1990 Sep;4(9):1386–1398. doi: 10.1210/mend-4-9-1386. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brody J. R., Cunha G. R. Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice: I. Normal development. Am J Anat. 1989 Sep;186(1):1–20. doi: 10.1002/aja.1001860102. [DOI] [PubMed] [Google Scholar]
- Cercek B., Fishbein M. C., Forrester J. S., Helfant R. H., Fagin J. A. Induction of insulin-like growth factor I messenger RNA in rat aorta after balloon denudation. Circ Res. 1990 Jun;66(6):1755–1760. doi: 10.1161/01.res.66.6.1755. [DOI] [PubMed] [Google Scholar]
- Chen Y., Bornfeldt K. E., Arner A., Jennische E., Malmqvist U., Uvelius B., Arnqvist H. J. Increase in insulin-like growth factor I in hypertrophying smooth muscle. Am J Physiol. 1994 Feb;266(2 Pt 1):E224–E229. doi: 10.1152/ajpendo.1994.266.2.E224. [DOI] [PubMed] [Google Scholar]
- Clemmons D. R. Exposure to platelet-derived growth factor modulates the porcine aortic smooth muscle cell response to somatomedin-C. Endocrinology. 1985 Jul;117(1):77–83. doi: 10.1210/endo-117-1-77. [DOI] [PubMed] [Google Scholar]
- Clemmons D. R., Van Wyk J. J. Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells. J Clin Invest. 1985 Jun;75(6):1914–1918. doi: 10.1172/JCI111906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cogan J. G., Sun S., Stoflet E. S., Schmidt L. J., Getz M. J., Strauch A. R. Plasticity of vascular smooth muscle alpha-actin gene transcription. Characterization of multiple, single-, and double-strand specific DNA-binding proteins in myoblasts and fibroblasts. J Biol Chem. 1995 May 12;270(19):11310–11321. doi: 10.1074/jbc.270.19.11310. [DOI] [PubMed] [Google Scholar]
- Coleman M. E., DeMayo F., Yin K. C., Lee H. M., Geske R., Montgomery C., Schwartz R. J. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995 May 19;270(20):12109–12116. doi: 10.1074/jbc.270.20.12109. [DOI] [PubMed] [Google Scholar]
- D'Ercole A. J. Expression of insulin-like growth factor-I in transgenic mice. Ann N Y Acad Sci. 1993 Aug 27;692:149–160. doi: 10.1111/j.1749-6632.1993.tb26213.x. [DOI] [PubMed] [Google Scholar]
- Donath M. Y., Zapf J., Eppenberger-Eberhardt M., Froesch E. R., Eppenberger H. M. Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1686–1690. doi: 10.1073/pnas.91.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan C., Hawes S. B., Prevette T., Clemmons D. R. Insulin-like growth factor-I (IGF-I) regulates IGF-binding protein-5 synthesis through transcriptional activation of the gene in aortic smooth muscle cells. J Biol Chem. 1996 Feb 23;271(8):4280–4288. doi: 10.1074/jbc.271.8.4280. [DOI] [PubMed] [Google Scholar]
- Foster D. N., Min B., Foster L. K., Stoflet E. S., Sun S., Getz M. J., Strauch A. R. Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle alpha-actin gene. J Biol Chem. 1992 Jun 15;267(17):11995–12003. [PubMed] [Google Scholar]
- Furlanetto R. W., Underwood L. E., Van Wyk J. J., D'Ercole A. J. Estimation of somatomedin-C levels in normals and patients with pituitary disease by radioimmunoassay. J Clin Invest. 1977 Sep;60(3):648–657. doi: 10.1172/JCI108816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghahary A., Chakrabarti S., Murphy L. J. Localization of the sites of synthesis and action of insulin-like growth factor-I in the rat uterus. Mol Endocrinol. 1990 Feb;4(2):191–195. doi: 10.1210/mend-4-2-191. [DOI] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. J., Camacho-Hubner C., Rashid P., Strain A. J., Clemmons D. R. Insulin-like growth factor (IGF)-binding protein release by human fetal fibroblasts: dependency on cell density and IGF peptides. J Endocrinol. 1989 Jul;122(1):87–98. doi: 10.1677/joe.0.1220087. [DOI] [PubMed] [Google Scholar]
- Häyry P., Myllärniemi M., Aavik E., Alatalo S., Aho P., Yilmaz S., Räisänen-Sokolowski A., Cozzone G., Jameson B. A., Baserga R. Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after carotid ballooning injury in the rat. FASEB J. 1995 Oct;9(13):1336–1344. doi: 10.1096/fasebj.9.13.7557024. [DOI] [PubMed] [Google Scholar]
- Katoh Y., Loukianov E., Kopras E., Zilberman A., Periasamy M. Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene. J Biol Chem. 1994 Dec 2;269(48):30538–30545. [PubMed] [Google Scholar]
- Kelley K. M., Oh Y., Gargosky S. E., Gucev Z., Matsumoto T., Hwa V., Ng L., Simpson D. M., Rosenfeld R. G. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol. 1996 Jun;28(6):619–637. doi: 10.1016/1357-2725(96)00005-2. [DOI] [PubMed] [Google Scholar]
- Khorsandi M. J., Fagin J. A., Giannella-Neto D., Forrester J. S., Cercek B. Regulation of insulin-like growth factor-I and its receptor in rat aorta after balloon denudation. Evidence for local bioactivity. J Clin Invest. 1992 Nov;90(5):1926–1931. doi: 10.1172/JCI116070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemmey A. B., Ballard F. J., Martin A. A., Tomas F. M., Howarth G. S., Read L. C. Treatment with IGF-I peptides improves function of the remnant gut following small bowel resection in rats. Growth Factors. 1994;10(4):243–252. doi: 10.3109/08977199409010990. [DOI] [PubMed] [Google Scholar]
- Li L., Miano J. M., Cserjesi P., Olson E. N. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res. 1996 Feb;78(2):188–195. doi: 10.1161/01.res.78.2.188. [DOI] [PubMed] [Google Scholar]
- Li L., Miano J. M., Mercer B., Olson E. N. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol. 1996 Mar;132(5):849–859. doi: 10.1083/jcb.132.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
- Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews L. S., Hammer R. E., Behringer R. R., D'Ercole A. J., Bell G. I., Brinster R. L., Palmiter R. D. Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology. 1988 Dec;123(6):2827–2833. doi: 10.1210/endo-123-6-2827. [DOI] [PubMed] [Google Scholar]
- Mathews L. S., Hammer R. E., Brinster R. L., Palmiter R. D. Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology. 1988 Jul;123(1):433–437. doi: 10.1210/endo-123-1-433. [DOI] [PubMed] [Google Scholar]
- McHugh K. M., Crawford K., Lessard J. L. A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol. 1991 Dec;148(2):442–458. doi: 10.1016/0012-1606(91)90263-3. [DOI] [PubMed] [Google Scholar]
- Miano J. M., Cserjesi P., Ligon K. L., Periasamy M., Olson E. N. Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ Res. 1994 Nov;75(5):803–812. doi: 10.1161/01.res.75.5.803. [DOI] [PubMed] [Google Scholar]
- Min B. H., Foster D. N., Strauch A. R. The 5'-flanking region of the mouse vascular smooth muscle alpha-actin gene contains evolutionarily conserved sequence motifs within a functional promoter. J Biol Chem. 1990 Sep 25;265(27):16667–16675. [PubMed] [Google Scholar]
- Murphy L. J. Estrogen induction of insulin-like growth factors and myc proto-oncogene expression in the uterus. J Steroid Biochem Mol Biol. 1991;40(1-3):223–230. doi: 10.1016/0960-0760(91)90186-9. [DOI] [PubMed] [Google Scholar]
- Ohneda K., Ulshen M. H., Fuller C. R., D'Ercole A. J., Lund P. K. Enhanced growth of small bowel in transgenic mice expressing human insulin-like growth factor I. Gastroenterology. 1997 Feb;112(2):444–454. doi: 10.1053/gast.1997.v112.pm9024298. [DOI] [PubMed] [Google Scholar]
- Owens G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995 Jul;75(3):487–517. doi: 10.1152/physrev.1995.75.3.487. [DOI] [PubMed] [Google Scholar]
- Palmiter R. D., Brinster R. L., Hammer R. E., Trumbauer M. E., Rosenfeld M. G., Birnberg N. C., Evans R. M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982 Dec 16;300(5893):611–615. doi: 10.1038/300611a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmiter R. D., Norstedt G., Gelinas R. E., Hammer R. E., Brinster R. L. Metallothionein-human GH fusion genes stimulate growth of mice. Science. 1983 Nov 18;222(4625):809–814. doi: 10.1126/science.6356363. [DOI] [PubMed] [Google Scholar]
- Quaife C. J., Mathews L. S., Pinkert C. A., Hammer R. E., Brinster R. L., Palmiter R. D. Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology. 1989 Jan;124(1):40–48. doi: 10.1210/endo-124-1-40. [DOI] [PubMed] [Google Scholar]
- Reiss K., Cheng W., Ferber A., Kajstura J., Li P., Li B., Olivetti G., Homcy C. J., Baserga R., Anversa P. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8630–8635. doi: 10.1073/pnas.93.16.8630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotwein P., James P. L., Kou K. Rapid activation of insulin-like growth factor binding protein-5 gene transcription during myoblast differentiation. Mol Endocrinol. 1995 Jul;9(7):913–923. doi: 10.1210/mend.9.7.7476973. [DOI] [PubMed] [Google Scholar]
- Sawtell N. M., Lessard J. L. Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the alpha-vascular but not the gamma-enteric isoform in differentiating striated myocytes. J Cell Biol. 1989 Dec;109(6 Pt 1):2929–2937. doi: 10.1083/jcb.109.6.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shackleford G. M., Varmus H. E. Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of mid-gestational embryos. Cell. 1987 Jul 3;50(1):89–95. doi: 10.1016/0092-8674(87)90665-9. [DOI] [PubMed] [Google Scholar]
- Shibko S., Koivistoinen P., Tratnyek C. A., Newhall A. R., Friedman L. A method for sequential quantitative separation and determination of protein, RNA, DNA, lipid, and glycogen from a single rat liver homogenate or from a subcellular fraction. Anal Biochem. 1967 Jun;19(3):514–528. doi: 10.1016/0003-2697(67)90242-4. [DOI] [PubMed] [Google Scholar]
- Skalli O., Vandekerckhove J., Gabbiani G. Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation. 1987;33(3):232–238. doi: 10.1111/j.1432-0436.1987.tb01562.x. [DOI] [PubMed] [Google Scholar]
- Southern E. Gel electrophoresis of restriction fragments. Methods Enzymol. 1979;68:152–176. doi: 10.1016/0076-6879(79)68011-4. [DOI] [PubMed] [Google Scholar]
- Stevenson K. R., Gilmour R. S., Wathes D. C. Localization of insulin-like growth factor-I (IGF-I) and -II messenger ribonucleic acid and type 1 IGF receptors in the ovine uterus during the estrous cycle and early pregnancy. Endocrinology. 1994 Apr;134(4):1655–1664. doi: 10.1210/endo.134.4.8137728. [DOI] [PubMed] [Google Scholar]
- Tang X. M., Rossi M. J., Masterson B. J., Chegini N. Insulin-like growth factor I (IGF-I), IGF-I receptors, and IGF binding proteins 1-4 in human uterine tissue: tissue localization and IGF-I action in endometrial stromal and myometrial smooth muscle cells in vitro. Biol Reprod. 1994 May;50(5):1113–1125. doi: 10.1095/biolreprod50.5.1113. [DOI] [PubMed] [Google Scholar]
- Termanini B., Nardi R. V., Finan T. M., Parikh I., Korman L. Y. Insulinlike growth factor I receptors in rabbit gastrointestinal tract. Characterization and autoradiographic localization. Gastroenterology. 1990 Jul;99(1):51–60. doi: 10.1016/0016-5085(90)91228-x. [DOI] [PubMed] [Google Scholar]
- Ulshen M. H., Dowling R. H., Fuller C. R., Zimmermann E. M., Lund P. K. Enhanced growth of small bowel in transgenic mice overexpressing bovine growth hormone. Gastroenterology. 1993 Apr;104(4):973–980. doi: 10.1016/0016-5085(93)90263-c. [DOI] [PubMed] [Google Scholar]
- Witte D. P., Aronow B. J., Dry J. K., Harmony J. A. Temporally and spatially restricted expression of apolipoprotein J in the developing heart defines discrete stages of valve morphogenesis. Dev Dyn. 1994 Nov;201(3):290–296. doi: 10.1002/aja.1002010311. [DOI] [PubMed] [Google Scholar]
- Wood T. L. Gene-targeting and transgenic approaches to IGF and IGF binding protein function. Am J Physiol. 1995 Oct;269(4 Pt 1):E613–E622. doi: 10.1152/ajpendo.1995.269.4.E613. [DOI] [PubMed] [Google Scholar]
- Woodcock-Mitchell J., Mitchell J. J., Low R. B., Kieny M., Sengel P., Rubbia L., Skalli O., Jackson B., Gabbiani G. Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation. 1988 Dec;39(3):161–166. doi: 10.1111/j.1432-0436.1988.tb00091.x. [DOI] [PubMed] [Google Scholar]
- Yang H., Adamo M. L., Koval A. P., McGuinness M. C., Ben-Hur H., Yang Y., LeRoith D., Roberts C. T., Jr Alternative leader sequences in insulin-like growth factor I mRNAs modulate translational efficiency and encode multiple signal peptides. Mol Endocrinol. 1995 Oct;9(10):1380–1395. doi: 10.1210/mend.9.10.8544846. [DOI] [PubMed] [Google Scholar]