Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1440–1447. doi: 10.1172/JCI119664

Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells.

A A Benders 1, P J Groenen 1, F T Oerlemans 1, J H Veerkamp 1, B Wieringa 1
PMCID: PMC508322  PMID: 9294109

Abstract

Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG)n-repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca2+]i, the amplitude and shape of depolarization-induced Ca2+ transients, and the content of ATP-driven ion pumps in cultured skeletal muscle cells of wild-type and DMPK[-/-] knockout mice. In vitro-differentiated DMPK[-/-] myotubes exhibit a higher resting [Ca2+]i than do wild-type myotubes because of an altered open probability of voltage-dependent l-type Ca2+ and Na+ channels. The mutant myotubes exhibit smaller and slower Ca2+ responses upon triggering by acetylcholine or high external K+. In addition, we observed that these Ca2+ transients partially result from an influx of extracellular Ca2+ through the l-type Ca2+ channel. Neither the content nor the activity of Na+/K+ ATPase and sarcoplasmic reticulum Ca2+-ATPase are affected by DMPK absence. In conclusion, our data suggest that DMPK is involved in modulating the initial events of excitation-contraction coupling in skeletal muscle.

Full Text

The Full Text of this article is available as a PDF (207.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker A. J., Head S. I., Williams D. A., Stephenson D. G. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. J Physiol. 1993 Jan;460:1–13. doi: 10.1113/jphysiol.1993.sp019455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benders A. A., Oosterhof A., Wevers R. A., Veerkamp J. H. Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca2+ and excitability. Cell Calcium. 1997 Jan;21(1):81–91. doi: 10.1016/s0143-4160(97)90099-3. [DOI] [PubMed] [Google Scholar]
  3. Benders A. A., Timmermans J. A., Oosterhof A., Ter Laak H. J., van Kuppevelt T. H., Wevers R. A., Veerkamp J. H. Deficiency of Na+/K(+)-ATPase and sarcoplasmic reticulum Ca(2+)-ATPase in skeletal muscle and cultured muscle cells of myotonic dystrophy patients. Biochem J. 1993 Jul 1;293(Pt 1):269–274. doi: 10.1042/bj2930269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benders A. A., Veerkamp J. H., Oosterhof A., Jongen P. J., Bindels R. J., Smit L. M., Busch H. F., Wevers R. A. Ca2+ homeostasis in Brody's disease. A study in skeletal muscle and cultured muscle cells and the effects of dantrolene an verapamil. J Clin Invest. 1994 Aug;94(2):741–748. doi: 10.1172/JCI117393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benders A. A., Wevers R. A., Veerkamp J. H. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease. Acta Physiol Scand. 1996 Mar;156(3):355–367. doi: 10.1046/j.1365-201X.1996.202000.x. [DOI] [PubMed] [Google Scholar]
  6. Boucher C. A., King S. K., Carey N., Krahe R., Winchester C. L., Rahman S., Creavin T., Meghji P., Bailey M. E., Chartier F. L. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum Mol Genet. 1995 Oct;4(10):1919–1925. doi: 10.1093/hmg/4.10.1919. [DOI] [PubMed] [Google Scholar]
  7. Brinkmeier H., Jockusch H. Activators of protein kinase C induce myotonia by lowering chloride conductance in muscle. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1383–1389. doi: 10.1016/s0006-291x(87)80285-1. [DOI] [PubMed] [Google Scholar]
  8. Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., Hunter K., Stanton V. P., Thirion J. P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992 Feb 21;68(4):799–808. doi: 10.1016/0092-8674(92)90154-5. [DOI] [PubMed] [Google Scholar]
  9. Bush E. W., Taft C. S., Meixell G. E., Perryman M. B. Overexpression of myotonic dystrophy kinase in BC3H1 cells induces the skeletal muscle phenotype. J Biol Chem. 1996 Jan 5;271(1):548–552. doi: 10.1074/jbc.271.1.548. [DOI] [PubMed] [Google Scholar]
  10. Cognard C., Rivet-Bastide M., Constantin B., Raymond G. Progressive predominance of 'skeletal' versus 'cardiac' types of excitation-contraction coupling during in vitro skeletal myogenesis. Pflugers Arch. 1992 Nov;422(2):207–209. doi: 10.1007/BF00370424. [DOI] [PubMed] [Google Scholar]
  11. Decker E. R., Dani J. A. Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant. J Neurosci. 1990 Oct;10(10):3413–3420. doi: 10.1523/JNEUROSCI.10-10-03413.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Desnuelle C., Lombet A., Serratrice G., Lazdunski M. Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment. J Clin Invest. 1982 Feb;69(2):358–367. doi: 10.1172/JCI110459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dulhunty A. F. The voltage-activation of contraction in skeletal muscle. Prog Biophys Mol Biol. 1992;57(3):181–223. doi: 10.1016/0079-6107(92)90024-z. [DOI] [PubMed] [Google Scholar]
  14. Dunne P. W., Ma L., Casey D. L., Harati Y., Epstein H. F. Localization of myotonic dystrophy protein kinase in skeletal muscle and its alteration with disease. Cell Motil Cytoskeleton. 1996;33(1):52–63. doi: 10.1002/(SICI)1097-0169(1996)33:1<52::AID-CM6>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  15. Edström L., Wroblewski R. Intracellular elemental composition of single muscle fibres in muscular dystrophy and dystrophia myotonica. Acta Neurol Scand. 1989 Nov;80(5):419–424. doi: 10.1111/j.1600-0404.1989.tb03903.x. [DOI] [PubMed] [Google Scholar]
  16. Fakler B., Brändle U., Glowatzki E., Zenner H. P., Ruppersberg J. P. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron. 1994 Dec;13(6):1413–1420. doi: 10.1016/0896-6273(94)90426-x. [DOI] [PubMed] [Google Scholar]
  17. Franke C., Hatt H., Iaizzo P. A., Lehmann-Horn F. Characteristics of Na+ channels and Cl- conductance in resealed muscle fibre segments from patients with myotonic dystrophy. J Physiol. 1990 Jun;425:391–405. doi: 10.1113/jphysiol.1990.sp018110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fu Y. H., Friedman D. L., Richards S., Pearlman J. A., Gibbs R. A., Pizzuti A., Ashizawa T., Perryman M. B., Scarlato G., Fenwick R. G., Jr Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science. 1993 Apr 9;260(5105):235–238. doi: 10.1126/science.8469976. [DOI] [PubMed] [Google Scholar]
  19. Fu Y. H., Pizzuti A., Fenwick R. G., Jr, King J., Rajnarayan S., Dunne P. W., Dubel J., Nasser G. A., Ashizawa T., de Jong P. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992 Mar 6;255(5049):1256–1258. doi: 10.1126/science.1546326. [DOI] [PubMed] [Google Scholar]
  20. Gailly P., Boland B., Himpens B., Casteels R., Gillis J. M. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium. 1993 Jun;14(6):473–483. doi: 10.1016/0143-4160(93)90006-r. [DOI] [PubMed] [Google Scholar]
  21. García J., Beam K. G. Calcium transients associated with the T type calcium current in myotubes. J Gen Physiol. 1994 Dec;104(6):1113–1128. doi: 10.1085/jgp.104.6.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. García J., Tanabe T., Beam K. G. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J Gen Physiol. 1994 Jan;103(1):125–147. doi: 10.1085/jgp.103.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gruener R., Stern L. Z., Markovitz D., Gerdes C. Electrophysiologic properties of intercostal muscle fibers in human neuromuscular diseases. Muscle Nerve. 1979 May-Jun;2(3):165–172. doi: 10.1002/mus.880020303. [DOI] [PubMed] [Google Scholar]
  24. Hidalgo C., Donoso P. Luminal calcium regulation of calcium release from sarcoplasmic reticulum. Biosci Rep. 1995 Oct;15(5):387–397. doi: 10.1007/BF01788370. [DOI] [PubMed] [Google Scholar]
  25. Hofmann-Radvanyi H., Lavedan C., Rabès J. P., Savoy D., Duros C., Johnson K., Junien C. Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum Mol Genet. 1993 Aug;2(8):1263–1266. doi: 10.1093/hmg/2.8.1263. [DOI] [PubMed] [Google Scholar]
  26. Hopf F. W., Reddy P., Hong J., Steinhardt R. A. A capacitative calcium current in cultured skeletal muscle cells is mediated by the calcium-specific leak channel and inhibited by dihydropyridine compounds. J Biol Chem. 1996 Sep 13;271(37):22358–22367. doi: 10.1074/jbc.271.37.22358. [DOI] [PubMed] [Google Scholar]
  27. Jacobs A. E., Benders A. A., Oosterhof A., Veerkamp J. H., van Mier P., Wevers R. A., Joosten E. M. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim Biophys Acta. 1990 Nov 14;1096(1):14–19. doi: 10.1016/0925-4439(90)90006-b. [DOI] [PubMed] [Google Scholar]
  28. Jansen G., Bächner D., Coerwinkel M., Wormskamp N., Hameister H., Wieringa B. Structural organization and developmental expression pattern of the mouse WD-repeat gene DMR-N9 immediately upstream of the myotonic dystrophy locus. Hum Mol Genet. 1995 May;4(5):843–852. doi: 10.1093/hmg/4.5.843. [DOI] [PubMed] [Google Scholar]
  29. Jansen G., Groenen P. J., Bächner D., Jap P. H., Coerwinkel M., Oerlemans F., van den Broek W., Gohlsch B., Pette D., Plomp J. J. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet. 1996 Jul;13(3):316–324. doi: 10.1038/ng0796-316. [DOI] [PubMed] [Google Scholar]
  30. Jansen G., Mahadevan M., Amemiya C., Wormskamp N., Segers B., Hendriks W., O'Hoy K., Baird S., Sabourin L., Lennon G. Characterization of the myotonic dystrophy region predicts multiple protein isoform-encoding mRNAs. Nat Genet. 1992 Jul;1(4):261–266. doi: 10.1038/ng0792-261. [DOI] [PubMed] [Google Scholar]
  31. Klein M. G., Cheng H., Santana L. F., Jiang Y. H., Lederer W. J., Schneider M. F. Two mechanisms of quantized calcium release in skeletal muscle. Nature. 1996 Feb 1;379(6564):455–458. doi: 10.1038/379455a0. [DOI] [PubMed] [Google Scholar]
  32. Kobayashi T., Askanas V., Saito K., Engel W. K., Ishikawa K. Abnormalities of aneural and innervated cultured muscle fibers from patients with myotonic atrophy (dystrophy). Arch Neurol. 1990 Aug;47(8):893–896. doi: 10.1001/archneur.1990.00530080077014. [DOI] [PubMed] [Google Scholar]
  33. Krahe R., Ashizawa T., Abbruzzese C., Roeder E., Carango P., Giacanelli M., Funanage V. L., Siciliano M. J. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics. 1995 Jul 1;28(1):1–14. doi: 10.1006/geno.1995.1099. [DOI] [PubMed] [Google Scholar]
  34. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  35. Lacerda A. E., Kim H. S., Ruth P., Perez-Reyes E., Flockerzi V., Hofmann F., Birnbaumer L., Brown A. M. Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature. 1991 Aug 8;352(6335):527–530. doi: 10.1038/352527a0. [DOI] [PubMed] [Google Scholar]
  36. Levitan I. B. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol. 1994;56:193–212. doi: 10.1146/annurev.ph.56.030194.001205. [DOI] [PubMed] [Google Scholar]
  37. Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barceló J., O'Hoy K. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science. 1992 Mar 6;255(5049):1253–1255. doi: 10.1126/science.1546325. [DOI] [PubMed] [Google Scholar]
  38. Martinuzzi A., Askanas V., Kobayashi T., Engel W. K., Di Mauro S. Expression of muscle-gene-specific isozymes of phosphorylase and creatine kinase in innervated cultured human muscle. J Cell Biol. 1986 Oct;103(4):1423–1429. doi: 10.1083/jcb.103.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  40. Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
  41. Merickel M., Gray R., Chauvin P., Appel S. Cultured muscle from myotonic muscular dystrophy patients: altered membrane electrical properties. Proc Natl Acad Sci U S A. 1981 Jan;78(1):648–652. doi: 10.1073/pnas.78.1.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mounsey J. P., Xu P., John J. E., 3rd, Horne L. T., Gilbert J., Roses A. D., Moorman J. R. Modulation of skeletal muscle sodium channels by human myotonin protein kinase. J Clin Invest. 1995 May;95(5):2379–2384. doi: 10.1172/JCI117931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Numann R., Hauschka S. D., Catterall W. A., Scheuer T. Modulation of skeletal muscle sodium channels in a satellite cell line by protein kinase C. J Neurosci. 1994 Jul;14(7):4226–4236. doi: 10.1523/JNEUROSCI.14-07-04226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Perozo E., Jong D. S., Bezanilla F. Single channel studies of the phosphorylation of K+ channels in the squid giant axon. II. Nonstationary conditions. J Gen Physiol. 1991 Jul;98(1):19–34. doi: 10.1085/jgp.98.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pette D., Vrbová G. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol. 1992;120:115–202. doi: 10.1007/BFb0036123. [DOI] [PubMed] [Google Scholar]
  46. Reddy S., Smith D. B., Rich M. M., Leferovich J. M., Reilly P., Davis B. M., Tran K., Rayburn H., Bronson R., Cros D. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet. 1996 Jul;13(3):325–335. doi: 10.1038/ng0796-325. [DOI] [PubMed] [Google Scholar]
  47. Renaud J. F., Desnuelle C., Schmid-Antomarchi H., Hugues M., Serratrice G., Lazdunski M. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature. 1986 Feb 20;319(6055):678–680. doi: 10.1038/319678a0. [DOI] [PubMed] [Google Scholar]
  48. Ríos E., Pizarro G., Stefani E. Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol. 1992;54:109–133. doi: 10.1146/annurev.ph.54.030192.000545. [DOI] [PubMed] [Google Scholar]
  49. Rüdel R., Ruppersberg J. P., Spittelmeister W. Abnormalities of the fast sodium current in myotonic dystrophy, recessive generalized myotonia, and adynamia episodica. Muscle Nerve. 1989 Apr;12(4):281–287. doi: 10.1002/mus.880120405. [DOI] [PubMed] [Google Scholar]
  50. Sabouri L. A., Mahadevan M. S., Narang M., Lee D. S., Surh L. C., Korneluk R. G. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nat Genet. 1993 Jul;4(3):233–238. doi: 10.1038/ng0793-233. [DOI] [PubMed] [Google Scholar]
  51. Savaria D., Lanoue C., Cadieux A., Rousseau E. Large conducting potassium channel reconstituted from airway smooth muscle. Am J Physiol. 1992 Mar;262(3 Pt 1):L327–L336. doi: 10.1152/ajplung.1992.262.3.L327. [DOI] [PubMed] [Google Scholar]
  52. Schneider M. F. Control of calcium release in functioning skeletal muscle fibers. Annu Rev Physiol. 1994;56:463–484. doi: 10.1146/annurev.ph.56.030194.002335. [DOI] [PubMed] [Google Scholar]
  53. Sherman S. J., Lawrence J. C., Messner D. J., Jacoby K., Catterall W. A. Tetrodotoxin-sensitive sodium channels in rat muscle cells developing in vitro. J Biol Chem. 1983 Feb 25;258(4):2488–2495. [PubMed] [Google Scholar]
  54. Taneja K. L., McCurrach M., Schalling M., Housman D., Singer R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol. 1995 Mar;128(6):995–1002. doi: 10.1083/jcb.128.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Timchenko L., Nastainczyk W., Schneider T., Patel B., Hofmann F., Caskey C. T. Full-length myotonin protein kinase (72 kDa) displays serine kinase activity. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5366–5370. doi: 10.1073/pnas.92.12.5366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wang J., Pegoraro E., Menegazzo E., Gennarelli M., Hoop R. C., Angelini C., Hoffman E. P. Myotonic dystrophy: evidence for a possible dominant-negative RNA mutation. Hum Mol Genet. 1995 Apr;4(4):599–606. doi: 10.1093/hmg/4.4.599. [DOI] [PubMed] [Google Scholar]
  57. Waring J. D., Haq R., Tamai K., Sabourin L. A., Ikeda J. E., Korneluk R. G. Investigation of myotonic dystrophy kinase isoform translocation and membrane association. J Biol Chem. 1996 Jun 21;271(25):15187–15193. doi: 10.1074/jbc.271.25.15187. [DOI] [PubMed] [Google Scholar]
  58. Williams D. A., Head S. I., Bakker A. J., Stephenson D. G. Resting calcium concentrations in isolated skeletal muscle fibres of dystrophic mice. J Physiol. 1990 Sep;428:243–256. doi: 10.1113/jphysiol.1990.sp018210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. van der Ven P. F., Jansen G., van Kuppevelt T. H., Perryman M. B., Lupa M., Dunne P. W., ter Laak H. J., Jap P. H., Veerkamp J. H., Epstein H. F. Myotonic dystrophy kinase is a component of neuromuscular junctions. Hum Mol Genet. 1993 Nov;2(11):1889–1894. doi: 10.1093/hmg/2.11.1889. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES