Abstract
Abnormal deposits of free iron are found on the cytoplasmic surface of red blood cell (RBC) membranes in beta-thalassemia. To test the hypothesis that this is of importance to RBC pathobiology, we administered the iron chelator deferiprone (L1) intraperitoneally to beta-thalassemic mice for 4 wk and then studied RBC survival and membrane characteristics. L1 therapy decreased membrane free iron by 50% (P = 0.04) and concomitantly improved oxidation of membrane proteins (P = 0.007), the proportion of RBC gilded with immunoglobulin (P = 0.001), RBC potassium content (P < 0.001), and mean corpuscular volume (P < 0.001). Osmotic gradient ektacytometry confirmed a trend toward improvement of RBC hydration status. As determined by clearance of RBC biotinylated in vivo, RBC survival also was significantly improved in L1-treated mice compared with controls (P = 0.007). Thus, in vivo therapy with L1 removes pathologic free iron deposits from RBC membranes in murine thalassemia, and causes improvement in membrane function and RBC survival. This result provides in vivo confirmation that abnormal membrane free iron deposits contribute to the pathobiology of thalassemic RBC.
Full Text
The Full Text of this article is available as a PDF (166.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Advani R., Rubin E., Mohandas N., Schrier S. L. Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia. Blood. 1992 Feb 15;79(4):1064–1067. [PubMed] [Google Scholar]
- Advani R., Sorenson S., Shinar E., Lande W., Rachmilewitz E., Schrier S. L. Characterization and comparison of the red blood cell membrane damage in severe human alpha- and beta-thalassemia. Blood. 1992 Feb 15;79(4):1058–1063. [PubMed] [Google Scholar]
- Armsby C. C., Brugnara C., Alper S. L. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease. Am J Physiol. 1995 Apr;268(4 Pt 1):C894–C902. doi: 10.1152/ajpcell.1995.268.4.C894. [DOI] [PubMed] [Google Scholar]
- Clark M. R., Mohandas N., Shohet S. B. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood. 1983 May;61(5):899–910. [PubMed] [Google Scholar]
- Fabry M. E., Nagel R. L., Pachnis A., Suzuka S. M., Costantini F. High expression of human beta S- and alpha-globins in transgenic mice: hemoglobin composition and hematological consequences. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12150–12154. doi: 10.1073/pnas.89.24.12150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hebbel R. P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991 Jan 15;77(2):214–237. [PubMed] [Google Scholar]
- Hebbel R. P. The sickle erythrocyte in double jeopardy: autoxidation and iron decompartmentalization. Semin Hematol. 1990 Jan;27(1):51–69. [PubMed] [Google Scholar]
- Hoffmann-Fezer G., Mysliwietz J., Mörtlbauer W., Zeitler H. J., Eberle E., Hönle U., Thierfelder S. Biotin labeling as an alternative nonradioactive approach to determination of red cell survival. Ann Hematol. 1993 Aug;67(2):81–87. doi: 10.1007/BF01788131. [DOI] [PubMed] [Google Scholar]
- Kuross S. A., Hebbel R. P. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation. Blood. 1988 Oct;72(4):1278–1285. [PubMed] [Google Scholar]
- Kuross S. A., Rank B. H., Hebbel R. P. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation. Blood. 1988 Apr;71(4):876–882. [PubMed] [Google Scholar]
- Olivieri N. F., Brittenham G. M., Matsui D., Berkovitch M., Blendis L. M., Cameron R. G., McClelland R. A., Liu P. P., Templeton D. M., Koren G. Iron-chelation therapy with oral deferipronein patients with thalassemia major. N Engl J Med. 1995 Apr 6;332(14):918–922. doi: 10.1056/NEJM199504063321404. [DOI] [PubMed] [Google Scholar]
- Olivieri N. F. Long-term therapy with deferiprone. Acta Haematol. 1996;95(1):37–48. doi: 10.1159/000203854. [DOI] [PubMed] [Google Scholar]
- Olivieri O., De Franceschi L., Capellini M. D., Girelli D., Corrocher R., Brugnara C. Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias. Blood. 1994 Jul 1;84(1):315–320. [PubMed] [Google Scholar]
- Rank B. H., Carlsson J., Hebbel R. P. Abnormal redox status of membrane-protein thiols in sickle erythrocytes. J Clin Invest. 1985 May;75(5):1531–1537. doi: 10.1172/JCI111857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Repka T., Hebbel R. P. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents. Blood. 1991 Nov 15;78(10):2753–2758. [PubMed] [Google Scholar]
- Repka T., Shalev O., Reddy R., Yuan J., Abrahamov A., Rachmilewitz E. A., Low P. S., Hebbel R. P. Nonrandom association of free iron with membranes of sickle and beta-thalassemic erythrocytes. Blood. 1993 Nov 15;82(10):3204–3210. [PubMed] [Google Scholar]
- Rouyer-Fessard P., Garel M. C., Domenget C., Guetarni D., Bachir D., Colonna P., Beuzard Y. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia. J Biol Chem. 1989 Nov 15;264(32):19092–19098. [PubMed] [Google Scholar]
- Rouyer-Fessard P., Leroy-Viard K., Domenget C., Mrad A., Beuzard Y. Mouse beta thalassemia, a model for the membrane defects of erythrocytes in the human disease. J Biol Chem. 1990 Nov 25;265(33):20247–20251. [PubMed] [Google Scholar]
- Schrier S. L., Rachmilewitz E., Mohandas N. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations. Blood. 1989 Nov 1;74(6):2194–2202. [PubMed] [Google Scholar]
- Scott M. D., van den Berg J. J., Repka T., Rouyer-Fessard P., Hebbel R. P., Beuzard Y., Lubin B. H. Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J Clin Invest. 1993 Apr;91(4):1706–1712. doi: 10.1172/JCI116380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shalev O., Hebbel R. P. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes. Blood. 1996 May 1;87(9):3948–3952. [PubMed] [Google Scholar]
- Shalev O., Repka T., Goldfarb A., Grinberg L., Abrahamov A., Olivieri N. F., Rachmilewitz E. A., Hebbel R. P. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo. Blood. 1995 Sep 1;86(5):2008–2013. [PubMed] [Google Scholar]
- Shinar E., Rachmilewitz E. A., Lux S. E. Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia. J Clin Invest. 1989 Feb;83(2):404–410. doi: 10.1172/JCI113898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinar E., Rachmilewitz E. A. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol. 1990 Jan;27(1):70–82. [PubMed] [Google Scholar]
- Skow L. C., Burkhart B. A., Johnson F. M., Popp R. A., Popp D. M., Goldberg S. Z., Anderson W. F., Barnett L. B., Lewis S. E. A mouse model for beta-thalassemia. Cell. 1983 Oct;34(3):1043–1052. doi: 10.1016/0092-8674(83)90562-7. [DOI] [PubMed] [Google Scholar]
- Thevenin B. J., Willardson B. M., Low P. S. The redox state of cysteines 201 and 317 of the erythrocyte anion exchanger is critical for ankyrin binding. J Biol Chem. 1989 Sep 25;264(27):15886–15892. [PubMed] [Google Scholar]
- Yuan J., Kannan R., Shinar E., Rachmilewitz E. A., Low P. S. Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes. Blood. 1992 Jun 1;79(11):3007–3013. [PubMed] [Google Scholar]