Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1488–1492. doi: 10.1172/JCI119670

The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure.

G Gupta 1, M Azam 1, L Yang 1, R S Danziger 1
PMCID: PMC508328  PMID: 9294115

Abstract

Cytosolic guanylyl cyclases (GTP pyrophosphate-lyase [cyclizing; EC 4.6.1.2]), primary receptors for nitric oxide (NO) generated by NO synthases, are obligate heterodimers consisting of an alpha and a beta subunit. The alpha1/beta1 form of guanylyl cyclase has the greatest activity and is considered the universal form. An isomer of the beta1 subunit, i.e., beta2, has been detected in the liver and kidney, however, its role is not known. In this study, we investigated the function of beta2. Immunoprecipitation experiments showed that the beta2 subunit forms a heterodimer with the alpha1 subunit. NO-stimulated cGMP formation in COS 7 cells cotransfected with the alpha1 and beta2 subunits was approximately 1/3 of that when alpha1 and beta1 subunits were cotransfected. The beta2 subunit inhibited NO-stimulated activity of the alpha1/beta1 form of guanylyl cyclase and NO-stimulated cGMP formation in cultured smooth muscle cells. Our results provide the first evidence that the beta2 subunit can regulate NO sensitivity of the alpha1/beta1 form of guanylyl cyclase. Northern analysis for guanylyl cyclase subunits was performed on RNA from kidneys of Dahl salt-sensitive rats, which have been shown to have decreased renal sensitivity to NO. Compared to the Dahl salt-resistant rat, message for beta2 was increased, beta1 was decreased, and alpha1 was unchanged. These results suggest a molecular basis for decreased renal guanylyl cyclase activity, i.e. , an increase in the alpha1/beta2 heterodimer, and decrease in the alpha1/beta1 heterodimer.

Full Text

The Full Text of this article is available as a PDF (261.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann S., Mundel P. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis. 1994 Jul;24(1):112–129. doi: 10.1016/s0272-6386(12)80170-3. [DOI] [PubMed] [Google Scholar]
  2. Behrends S., Harteneck C., Schultz G., Koesling D. A variant of the alpha 2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclases and functions as a dominant negative protein. J Biol Chem. 1995 Sep 8;270(36):21109–21113. doi: 10.1074/jbc.270.36.21109. [DOI] [PubMed] [Google Scholar]
  3. DAHL L. K., HEINE M., TASSINARI L. Effects of chronia excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med. 1962 Jun 1;115:1173–1190. doi: 10.1084/jem.115.6.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahl L. K., Knudsen K. D., Heine M. A., Leitl G. J. Effects of chronic excess salt ingestion. Modification of experimental hypertension in the rat by variations in the diet. Circ Res. 1968 Jan;22(1):11–18. doi: 10.1161/01.res.22.1.11. [DOI] [PubMed] [Google Scholar]
  5. Drewett J. G., Garbers D. L. The family of guanylyl cyclase receptors and their ligands. Endocr Rev. 1994 Apr;15(2):135–162. doi: 10.1210/edrv-15-2-135. [DOI] [PubMed] [Google Scholar]
  6. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foerster J., Harteneck C., Malkewitz J., Schultz G., Koesling D. A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of alpha 1 and beta 1 subunits. Eur J Biochem. 1996 Sep 1;240(2):380–386. doi: 10.1111/j.1432-1033.1996.0380h.x. [DOI] [PubMed] [Google Scholar]
  8. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garbers D. L., Lowe D. G. Guanylyl cyclase receptors. J Biol Chem. 1994 Dec 9;269(49):30741–30744. [PubMed] [Google Scholar]
  10. Harteneck C., Wedel B., Koesling D., Malkewitz J., Böhme E., Schultz G. Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett. 1991 Nov 4;292(1-2):217–222. doi: 10.1016/0014-5793(91)80871-y. [DOI] [PubMed] [Google Scholar]
  11. Ignarro L. J., Adams J. B., Horwitz P. M., Wood K. S. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem. 1986 Apr 15;261(11):4997–5002. [PubMed] [Google Scholar]
  12. Kamisaki Y., Saheki S., Nakane M., Palmieri J. A., Kuno T., Chang B. Y., Waldman S. A., Murad F. Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem. 1986 Jun 5;261(16):7236–7241. [PubMed] [Google Scholar]
  13. Koesling D., Harteneck C., Humbert P., Bosserhoff A., Frank R., Schultz G., Böhme E. The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. Homology between the two subunits of the enzyme. FEBS Lett. 1990 Jun 18;266(1-2):128–132. doi: 10.1016/0014-5793(90)81523-q. [DOI] [PubMed] [Google Scholar]
  14. Koesling D., Harteneck C., Humbert P., Bosserhoff A., Frank R., Schultz G., Böhme E. The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. Homology between the two subunits of the enzyme. FEBS Lett. 1990 Jun 18;266(1-2):128–132. doi: 10.1016/0014-5793(90)81523-q. [DOI] [PubMed] [Google Scholar]
  15. Simchon S., Manger W. M., Brown T. W. Dual hemodynamic mechanisms for salt-induced hypertension in Dahl salt-sensitive rats. Hypertension. 1991 Jun;17(6 Pt 2):1063–1071. doi: 10.1161/01.hyp.17.6.1063. [DOI] [PubMed] [Google Scholar]
  16. Simchon S., Manger W. M., Carlin R. D., Peeters L. L., Rodriguez J., Batista D., Brown T., Merchant N. B., Jan K. M., Chien S. Salt-induced hypertension in Dahl salt-sensitive rats. Hemodynamics and renal responses. Hypertension. 1989 Jun;13(6 Pt 1):612–621. doi: 10.1161/01.hyp.13.6.612. [DOI] [PubMed] [Google Scholar]
  17. Simchon S., Manger W., Blumberg G., Brensilver J., Cortell S. Impaired renal vasodilation and urinary cGMP excretion in Dahl salt-sensitive rats. Hypertension. 1996 Mar;27(3 Pt 2):653–657. doi: 10.1161/01.hyp.27.3.653. [DOI] [PubMed] [Google Scholar]
  18. Ujiie K., Drewett J. G., Yuen P. S., Star R. A. Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney. J Clin Invest. 1993 Feb;91(2):730–734. doi: 10.1172/JCI116255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ujiie K., Hogarth L., Danziger R., Drewett J. G., Yuen P. S., Pang I. H., Star R. A. Homologous and heterologous desensitization of a guanylyl cyclase-linked nitric oxide receptor in cultured rat medullary interstitial cells. J Pharmacol Exp Ther. 1994 Aug;270(2):761–767. [PubMed] [Google Scholar]
  20. Wedel B., Harteneck C., Foerster J., Friebe A., Schultz G., Koesling D. Functional domains of soluble guanylyl cyclase. J Biol Chem. 1995 Oct 20;270(42):24871–24875. doi: 10.1074/jbc.270.42.24871. [DOI] [PubMed] [Google Scholar]
  21. Wedel B., Humbert P., Harteneck C., Foerster J., Malkewitz J., Böhme E., Schultz G., Koesling D. Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2592–2596. doi: 10.1073/pnas.91.7.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yuen P. S., Potter L. R., Garbers D. L. A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry. 1990 Dec 11;29(49):10872–10878. doi: 10.1021/bi00501a002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES