Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1501–1506. doi: 10.1172/JCI119672

Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity.

Y J Kang 1, Y Chen 1, A Yu 1, M Voss-McCowan 1, P N Epstein 1
PMCID: PMC508330  PMID: 9294117

Abstract

Metallothionein (MT) may provide protection against doxorubicin-induced heart damage. To test this hypothesis, a heart-specific promoter was used to drive the expression of human MT-IIa gene in transgenic mice. Four healthy transgenic mouse lines were produced. Cardiac MT was constitutively overexpressed from 10- to 130-fold higher than normal. The MT concentration was not altered in liver, kidneys, lungs, or skeletal muscles. Other antioxidant components including glutathione, glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were not altered in the MT-overexpressing heart. Mice (7-wk-old) from transgenic lines expressing MT activity 10- or 130-fold higher than normal and from nontransgenic controls were treated intraperitoneally with doxorubicin at a single dose of 20 mg/kg, and were killed on the 4th day after treatment. As compared to normal controls, transgenic mice exhibited a significant resistance to in vivo doxorubicin-induced cardiac morphological changes, and the increase in serum creatine phosphokinase activity. Atria isolated from transgenic mice and treated with doxorubicin in tissue bath was also more resistant to functional damage induced by this drug. The results provide direct evidence for the role of MT in cardioprotection against doxorubicin toxicity.

Full Text

The Full Text of this article is available as a PDF (315.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Bachur N. R., Gordon S. L., Gee M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res. 1978 Jun;38(6):1745–1750. [PubMed] [Google Scholar]
  3. Buzdar A. U., Marcus C., Smith T. L., Blumenschein G. R. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer. 1985 Jun 15;55(12):2761–2765. doi: 10.1002/1097-0142(19850615)55:12<2761::aid-cncr2820551206>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  4. Carlberg I., Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–490. doi: 10.1016/s0076-6879(85)13062-4. [DOI] [PubMed] [Google Scholar]
  5. Chvapil M., Ryan J. N., Zukoski C. F. Effect of zinc on lipid peroxidation in liver microsomes and mitochondria. Proc Soc Exp Biol Med. 1972 Oct;141(1):150–153. doi: 10.3181/00379727-141-36734. [DOI] [PubMed] [Google Scholar]
  6. Eaton D. L., Cherian M. G. Determination of metallothionein in tissues by cadmium-hemoglobin affinity assay. Methods Enzymol. 1991;205:83–88. doi: 10.1016/0076-6879(91)05089-e. [DOI] [PubMed] [Google Scholar]
  7. Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep. 1978 Jun;62(6):955–961. [PubMed] [Google Scholar]
  8. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  9. Good M., Vasák M. Iron(II)-substituted metallothionein: evidence for the existence of iron-thiolate clusters. Biochemistry. 1986 Dec 30;25(26):8353–8356. doi: 10.1021/bi00374a003. [DOI] [PubMed] [Google Scholar]
  10. Gulick J., Subramaniam A., Neumann J., Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem. 1991 May 15;266(14):9180–9185. [PubMed] [Google Scholar]
  11. Hamer D. H. Metallothionein. Annu Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. [DOI] [PubMed] [Google Scholar]
  12. Hida H., Coudray C., Calop J., Favier A. Effect of antioxidants on adriamycin-induced microsomal lipid peroxidation. Biol Trace Elem Res. 1995 Jan-Mar;47(1-3):111–116. doi: 10.1007/BF02790107. [DOI] [PubMed] [Google Scholar]
  13. Julicher R. H., van der Laarse A., Sterrenberg L., Bloys van Treslong C. H., Bast A., Noordhoek J. The involvement of an oxidative mechanism in the adriamycin induced toxicity in neonatal rat heart cell cultures. Res Commun Chem Pathol Pharmacol. 1985 Jan;47(1):35–47. [PubMed] [Google Scholar]
  14. Kalyanaraman B., Sealy R. C., Sinha B. K. An electron spin resonance study of the reduction of peroxides by anthracycline semiquinones. Biochim Biophys Acta. 1984 Jun 29;799(3):270–275. doi: 10.1016/0304-4165(84)90270-8. [DOI] [PubMed] [Google Scholar]
  15. Kang Y. J., Chen Y., Epstein P. N. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996 May 24;271(21):12610–12616. doi: 10.1074/jbc.271.21.12610. [DOI] [PubMed] [Google Scholar]
  16. Karin M., Richards R. I. Human metallothionein genes--primary structure of the metallothionein-II gene and a related processed gene. Nature. 1982 Oct 28;299(5886):797–802. doi: 10.1038/299797a0. [DOI] [PubMed] [Google Scholar]
  17. Keizer H. G., Pinedo H. M., Schuurhuis G. J., Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther. 1990;47(2):219–231. doi: 10.1016/0163-7258(90)90088-j. [DOI] [PubMed] [Google Scholar]
  18. Lazo J. S., Pitt B. R. Metallothioneins and cell death by anticancer drugs. Annu Rev Pharmacol Toxicol. 1995;35:635–653. doi: 10.1146/annurev.pa.35.040195.003223. [DOI] [PubMed] [Google Scholar]
  19. Lee V., Randhawa A. K., Singal P. K. Adriamycin-induced myocardial dysfunction in vitro is mediated by free radicals. Am J Physiol. 1991 Oct;261(4 Pt 2):H989–H995. doi: 10.1152/ajpheart.1991.261.4.H989. [DOI] [PubMed] [Google Scholar]
  20. Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977 Jul 8;197(4299):165–167. doi: 10.1126/science.877547. [DOI] [PubMed] [Google Scholar]
  21. NIELSEN L., LUDVIGSEN B. Improved method for determination of creatine kinase. J Lab Clin Med. 1963 Jul;62:159–168. [PubMed] [Google Scholar]
  22. Nebot C., Moutet M., Huet P., Xu J. Z., Yadan J. C., Chaudiere J. Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem. 1993 Nov 1;214(2):442–451. doi: 10.1006/abio.1993.1521. [DOI] [PubMed] [Google Scholar]
  23. Olson R. D., Boerth R. C., Gerber J. G., Nies A. S. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 1981 Oct 5;29(14):1393–1401. doi: 10.1016/0024-3205(81)90001-1. [DOI] [PubMed] [Google Scholar]
  24. Powell S. R., McCay P. B. Inhibition of doxorubicin-initiated membrane damage by N-acetylcysteine: possible mediation by a thiol-dependent, cytosolic inhibitor of lipid peroxidation. Toxicol Appl Pharmacol. 1988 Nov;96(2):175–184. doi: 10.1016/0041-008x(88)90078-6. [DOI] [PubMed] [Google Scholar]
  25. Satoh M., Naganuma A., Imura N. Metallothionein induction prevents toxic side effects of cisplatin and adriamycin used in combination. Cancer Chemother Pharmacol. 1988;21(2):176–178. doi: 10.1007/BF00257369. [DOI] [PubMed] [Google Scholar]
  26. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  27. Taketo M., Schroeder A. C., Mobraaten L. E., Gunning K. B., Hanten G., Fox R. R., Roderick T. H., Stewart C. L., Lilly F., Hansen C. T. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2065–2069. doi: 10.1073/pnas.88.6.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thomas J. P., Bachowski G. J., Girotti A. W. Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins. Biochim Biophys Acta. 1986 Dec 10;884(3):448–461. doi: 10.1016/0304-4165(86)90195-9. [DOI] [PubMed] [Google Scholar]
  29. Thornalley P. J., Vasák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta. 1985 Jan 21;827(1):36–44. doi: 10.1016/0167-4838(85)90098-6. [DOI] [PubMed] [Google Scholar]
  30. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  31. Von Hoff D. D., Layard M. W., Basa P., Davis H. L., Jr, Von Hoff A. L., Rozencweig M., Muggia F. M. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979 Nov;91(5):710–717. doi: 10.7326/0003-4819-91-5-710. [DOI] [PubMed] [Google Scholar]
  32. Willis E. H., Mardis E. R., Jones W. L., Little M. C. Prep-A-Gene: a superior matrix for the purification of DNA and DNA fragments. Biotechniques. 1990 Jul;9(1):92–99. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES