Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1507–1512. doi: 10.1172/JCI119673

Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase.

M A Lee 1, L Cai 1, N Hübner 1, Y A Lee 1, K Lindpaintner 1
PMCID: PMC508331  PMID: 9294118

Abstract

Nitric oxide (NO) functions as an intercellular messenger and mediates numerous biological functions. Among the three isoforms of NO synthase that produce NO, the ubiquitously expressed neuronal NO synthase (nNOS) is responsible for a large part of NO production, yet its regulation is poorly understood. Recent reports of two alternative spliceforms of nNOS in the mouse and in man have raised the possibility of spatial and temporal modulation of expression. This study demonstrates the existence of at least three transcripts of the rat nNOS gene designated nNOSa, nNOSb, and nNOSc, respectively, with distinct 5' untranslated first exons that arise from alternative splicing to a common second exon. Expression of the alternative transcripts occurs with a high degree of tissue and developmental specificity, as demonstrated by RNase protection assays on multiple tissues from both fetal and adult rats. Furthermore, terminal differentiation of rat pheochromocytoma-derived PC12 cells into neurons is associated with induction of nNOSa, suggesting, likewise, development- and tissue-specific transcriptional control of nNOS isoform expression. Physical mapping using a rat yeast artificial chromosome clone shows that the alternatively spliced first exons 1a, 1b, and 1c are separated by at least 15-60 kb from the downstream coding sequence, with exons 1b and 1c being positioned within 200 bp of each other. These findings provide evidence that the biological activity of nNOS is tightly and specifically regulated by a complex pattern of alternative splicing, indicating that the notion of constitutive expression of this isoform needs to be revised.

Full Text

The Full Text of this article is available as a PDF (216.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwater J. A., Wisdom R., Verma I. M. Regulated mRNA stability. Annu Rev Genet. 1990;24:519–541. doi: 10.1146/annurev.ge.24.120190.002511. [DOI] [PubMed] [Google Scholar]
  2. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  3. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  4. Bredt D. S., Snyder S. H. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron. 1994 Aug;13(2):301–313. doi: 10.1016/0896-6273(94)90348-4. [DOI] [PubMed] [Google Scholar]
  5. Brenman J. E., Chao D. S., Gee S. H., McGee A. W., Craven S. E., Santillano D. R., Wu Z., Huang F., Xia H., Peters M. F. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 1996 Mar 8;84(5):757–767. doi: 10.1016/s0092-8674(00)81053-3. [DOI] [PubMed] [Google Scholar]
  6. Cai L., Schalkwyk L. C., Schoeberlein-Stehli A., Zee R. Y., Smith A., Haaf T., Georges M., Lehrach H., Lindpaintner K. Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat, Rattus norvegicus. Genomics. 1997 Feb 1;39(3):385–392. doi: 10.1006/geno.1996.4494. [DOI] [PubMed] [Google Scholar]
  7. Chartrain N. A., Geller D. A., Koty P. P., Sitrin N. F., Nussler A. K., Hoffman E. P., Billiar T. R., Hutchinson N. I., Mudgett J. S. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994 Mar 4;269(9):6765–6772. [PubMed] [Google Scholar]
  8. D'Arcangelo G., Habas R., Wang S., Halegoua S., Salton S. R. Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol Cell Biol. 1996 Sep;16(9):4621–4631. doi: 10.1128/mcb.16.9.4621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall A. V., Antoniou H., Wang Y., Cheung A. H., Arbus A. M., Olson S. L., Lu W. C., Kau C. L., Marsden P. A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem. 1994 Dec 30;269(52):33082–33090. [PubMed] [Google Scholar]
  11. Harada N., Utsumi T., Takagi Y. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11312–11316. doi: 10.1073/pnas.90.23.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herdegen T., Brecht S., Mayer B., Leah J., Kummer W., Bravo R., Zimmermann M. Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the rat brain following axotomy. J Neurosci. 1993 Oct;13(10):4130–4145. doi: 10.1523/JNEUROSCI.13-10-04130.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  15. Kim S. J., Park K., Rudkin B. B., Dey B. R., Sporn M. B., Roberts A. B. Nerve growth factor induces transcription of transforming growth factor-beta 1 through a specific promoter element in PC12 cells. J Biol Chem. 1994 Feb 4;269(5):3739–3744. [PubMed] [Google Scholar]
  16. Kuzin B., Roberts I., Peunova N., Enikolopov G. Nitric oxide regulates cell proliferation during Drosophila development. Cell. 1996 Nov 15;87(4):639–649. doi: 10.1016/s0092-8674(00)81384-7. [DOI] [PubMed] [Google Scholar]
  17. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lander H. M., Sehajpal P. K., Novogrodsky A. Nitric oxide signaling: a possible role for G proteins. J Immunol. 1993 Dec 15;151(12):7182–7187. [PubMed] [Google Scholar]
  19. Lowenstein C. J., Alley E. W., Raval P., Snowman A. M., Snyder S. H., Russell S. W., Murphy W. J. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9730–9734. doi: 10.1073/pnas.90.20.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M., Tsui L. C., Schappert K. T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478–17488. [PubMed] [Google Scholar]
  21. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  22. North A. J., Star R. A., Brannon T. S., Ujiie K., Wells L. B., Lowenstein C. J., Snyder S. H., Shaul P. W. Nitric oxide synthase type I and type III gene expression are developmentally regulated in rat lung. Am J Physiol. 1994 Jun;266(6 Pt 1):L635–L641. doi: 10.1152/ajplung.1994.266.6.L635. [DOI] [PubMed] [Google Scholar]
  23. Nudel U., Zakut R., Shani M., Neuman S., Levy Z., Yaffe D. The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Mar 25;11(6):1759–1771. doi: 10.1093/nar/11.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peunova N., Enikolopov G. Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature. 1993 Jul 29;364(6436):450–453. doi: 10.1038/364450a0. [DOI] [PubMed] [Google Scholar]
  25. Peunova N., Enikolopov G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature. 1995 May 4;375(6526):68–73. doi: 10.1038/375068a0. [DOI] [PubMed] [Google Scholar]
  26. Regulski M., Tully T. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9072–9076. doi: 10.1073/pnas.92.20.9072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sessa W. C., Harrison J. K., Luthin D. R., Pollock J. S., Lynch K. R. Genomic analysis and expression patterns reveal distinct genes for endothelial and brain nitric oxide synthase. Hypertension. 1993 Jun;21(6 Pt 2):934–938. doi: 10.1161/01.hyp.21.6.934. [DOI] [PubMed] [Google Scholar]
  28. Silvagno F., Xia H., Bredt D. S. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996 May 10;271(19):11204–11208. doi: 10.1074/jbc.271.19.11204. [DOI] [PubMed] [Google Scholar]
  29. Verge V. M., Xu Z., Xu X. J., Wiesenfeld-Hallin Z., Hökfelt T. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11617–11621. doi: 10.1073/pnas.89.23.11617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weiner C. P., Lizasoain I., Baylis S. A., Knowles R. G., Charles I. G., Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5212–5216. doi: 10.1073/pnas.91.11.5212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williams C. V., Nordquist D., McLoon S. C. Correlation of nitric oxide synthase expression with changing patterns of axonal projections in the developing visual system. J Neurosci. 1994 Mar;14(3 Pt 2):1746–1755. doi: 10.1523/JNEUROSCI.14-03-01746.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xie J., Roddy P., Rife T. K., Murad F., Young A. P. Two closely linked but separable promoters for human neuronal nitric oxide synthase gene transcription. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1242–1246. doi: 10.1073/pnas.92.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  35. Zimmer A., Zimmer A. M., Reynolds K. Tissue specific expression of the retinoic acid receptor-beta 2: regulation by short open reading frames in the 5'-noncoding region. J Cell Biol. 1994 Nov;127(4):1111–1119. doi: 10.1083/jcb.127.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES