Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1520–1528. doi: 10.1172/JCI119675

Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance.

F Terzi 1, D Henrion 1, E Colucci-Guyon 1, P Federici 1, C Babinet 1, B I Levy 1, P Briand 1, G Friedlander 1
PMCID: PMC508333  PMID: 9294120

Abstract

Modulation of vascular tone by chemical and mechanical stimuli is a crucial adaptive phenomenon which involves cytoskeleton elements. Disruption, by homologous recombination, of the gene encoding vimentin, a class III intermediate filament protein mainly expressed in vascular cells, was reported to result in apparently normal phenotype under physiological conditions. In this study, we evaluated whether the lack of vimentin affects vascular adaptation to pathological situations, such as reduction of renal mass, a pathological condition which usually results in immediate and sustained vasodilation of the renal vascular bed. Ablation of 3/4 of renal mass was constantly lethal within 72 h in mice lacking vimentin (Vim-/-), whereas no lethality was observed in wild-type littermates. Death in Vim-/- mice resulted from end-stage renal failure. Kidneys from Vim-/- mice synthesized more endothelin, but less nitric oxide (NO), than kidneys from normal animals. In vitro, renal resistance arteries from Vim-/- mice were selectively more sensitive to endothelin, less responsive to NO-dependent vasodilators, and exhibited an impaired flow (shear stress)- induced vasodilation, which is NO dependent, as compared with those from normal littermates. Finally, in vivo administration of bosentan, an endothelin receptor antagonist, totally prevented lethality in Vim-/- mice. These results suggest that vimentin plays a key role in the modulation of vascular tone, possibly via the tuning of endothelin-nitric oxide balance.

Full Text

The Full Text of this article is available as a PDF (534.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiello S., Noris M., Todeschini M., Zappella S., Foglieni C., Benigni A., Corna D., Zoja C., Cavallotti D., Remuzzi G. Renal and systemic nitric oxide synthesis in rats with renal mass reduction. Kidney Int. 1997 Jul;52(1):171–181. doi: 10.1038/ki.1997.317. [DOI] [PubMed] [Google Scholar]
  2. Banes A. J., Tsuzaki M., Yamamoto J., Fischer T., Brigman B., Brown T., Miller L. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):349–365. doi: 10.1139/o95-043. [DOI] [PubMed] [Google Scholar]
  3. Carraway K. L., Carraway C. A. Signaling, mitogenesis and the cytoskeleton: where the action is. Bioessays. 1995 Feb;17(2):171–175. doi: 10.1002/bies.950170212. [DOI] [PubMed] [Google Scholar]
  4. Clozel M., Breu V., Burri K., Cassal J. M., Fischli W., Gray G. A., Hirth G., Löffler B. M., Müller M., Neidhart W. Pathophysiological role of endothelin revealed by the first orally active endothelin receptor antagonist. Nature. 1993 Oct 21;365(6448):759–761. doi: 10.1038/365759a0. [DOI] [PubMed] [Google Scholar]
  5. Colucci-Guyon E., Portier M. M., Dunia I., Paulin D., Pournin S., Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994 Nov 18;79(4):679–694. doi: 10.1016/0092-8674(94)90553-3. [DOI] [PubMed] [Google Scholar]
  6. Cucina A., Sterpetti A. V., Pupelis G., Fragale A., Lepidi S., Cavallaro A., Giustiniani Q., Santoro D'Angelo L. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur J Vasc Endovasc Surg. 1995 Jan;9(1):86–92. doi: 10.1016/s1078-5884(05)80230-8. [DOI] [PubMed] [Google Scholar]
  7. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dowell F. J., Henrion D., Duriez M., Michel J. B. Vascular reactivity in mesenteric resistance arteries following chronic nitric oxide synthase inhibition in Wistar rats. Br J Pharmacol. 1996 Jan;117(2):341–346. doi: 10.1111/j.1476-5381.1996.tb15196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Falcone J. C., Granger H. J., Meininger G. A. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats. Am J Physiol. 1993 Dec;265(6 Pt 2):H1847–H1855. doi: 10.1152/ajpheart.1993.265.6.H1847. [DOI] [PubMed] [Google Scholar]
  10. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  11. Halpern W., Osol G., Coy G. S. Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng. 1984;12(5):463–479. doi: 10.1007/BF02363917. [DOI] [PubMed] [Google Scholar]
  12. Hecker M., Mülsch A., Bassenge E., Busse R. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol. 1993 Sep;265(3 Pt 2):H828–H833. doi: 10.1152/ajpheart.1993.265.3.H828. [DOI] [PubMed] [Google Scholar]
  13. Henrion D., Laher I. Potentiation of norepinephrine-induced contractions by endothelin-1 in the rabbit aorta. Hypertension. 1993 Jul;22(1):78–83. doi: 10.1161/01.hyp.22.1.78. [DOI] [PubMed] [Google Scholar]
  14. Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2811–2814. doi: 10.1073/pnas.88.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  16. Hunley T. E., Iwasaki S., Homma T., Kon V. Nitric oxide and endothelin in pathophysiological settings. Pediatr Nephrol. 1995 Apr;9(2):235–244. doi: 10.1007/BF00860758. [DOI] [PubMed] [Google Scholar]
  17. Hutcheson I. R., Griffith T. M. Mechanotransduction through the endothelial cytoskeleton: mediation of flow- but not agonist-induced EDRF release. Br J Pharmacol. 1996 Jun;118(3):720–726. doi: 10.1111/j.1476-5381.1996.tb15459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janmey P. A., Euteneuer U., Traub P., Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. 1991 Apr;113(1):155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim D. W., Gotlieb A. I., Langille B. L. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis. 1989 Jul-Aug;9(4):439–445. doi: 10.1161/01.atv.9.4.439. [DOI] [PubMed] [Google Scholar]
  20. Laher I., Bevan J. A. Staurosporine, a protein kinase C inhibitor, attenuates Ca2+-dependent stretch-induced vascular tone. Biochem Biophys Res Commun. 1989 Jan 16;158(1):58–62. doi: 10.1016/s0006-291x(89)80176-7. [DOI] [PubMed] [Google Scholar]
  21. Malek A. M., Izumo S. Control of endothelial cell gene expression by flow. J Biomech. 1995 Dec;28(12):1515–1528. doi: 10.1016/0021-9290(95)00099-2. [DOI] [PubMed] [Google Scholar]
  22. Malek A. M., Izumo S. Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens. 1994 Sep;12(9):989–999. [PubMed] [Google Scholar]
  23. Matsumoto H., Suzuki N., Onda H., Fujino M. Abundance of endothelin-3 in rat intestine, pituitary gland and brain. Biochem Biophys Res Commun. 1989 Oct 16;164(1):74–80. doi: 10.1016/0006-291x(89)91684-7. [DOI] [PubMed] [Google Scholar]
  24. Maunoury R., Robine S., Pringault E., Huet C., Guénet J. L., Gaillard J. A., Louvard D. Villin expression in the visceral endoderm and in the gut anlage during early mouse embryogenesis. EMBO J. 1988 Nov;7(11):3321–3329. doi: 10.1002/j.1460-2075.1988.tb03203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKee M., Scavone C., Nathanson J. A. Nitric oxide, cGMP, and hormone regulation of active sodium transport. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12056–12060. doi: 10.1073/pnas.91.25.12056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morita T., Kurihara H., Maemura K., Yoshizumi M., Yazaki Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest. 1993 Oct;92(4):1706–1712. doi: 10.1172/JCI116757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  28. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  29. Osol G. Mechanotransduction by vascular smooth muscle. J Vasc Res. 1995 Sep-Oct;32(5):275–292. doi: 10.1159/000159102. [DOI] [PubMed] [Google Scholar]
  30. Resink T. J., Scott-Burden T., Weber E., Bühler F. R. Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1213–1219. doi: 10.1016/0006-291x(90)90995-y. [DOI] [PubMed] [Google Scholar]
  31. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  32. Sachs F. Mechanical transduction in biological systems. Crit Rev Biomed Eng. 1988;16(2):141–169. [PubMed] [Google Scholar]
  33. Simonson M. S. Endothelins: multifunctional renal peptides. Physiol Rev. 1993 Apr;73(2):375–411. doi: 10.1152/physrev.1993.73.2.375. [DOI] [PubMed] [Google Scholar]
  34. Terzi F., Beaufils H., Laouari D., Burtin M., Kleinknecht C. Renal effect of anti-hypertensive drugs depends on sodium diet in the excision remnant kidney model. Kidney Int. 1992 Aug;42(2):354–363. doi: 10.1038/ki.1992.296. [DOI] [PubMed] [Google Scholar]
  35. Terzi F., Maunoury R., Colucci-Guyon E., Babinet C., Federici P., Briand P., Friedlander G. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin. Am J Pathol. 1997 Apr;150(4):1361–1371. [PMC free article] [PubMed] [Google Scholar]
  36. Thoumine O., Ziegler T., Girard P. R., Nerem R. M. Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure. Exp Cell Res. 1995 Aug;219(2):427–441. doi: 10.1006/excr.1995.1249. [DOI] [PubMed] [Google Scholar]
  37. Tsuda T., Griendling K. K., Ollerenshaw J. D., Lassègue B., Alexander R. W. Angiotensin-II-and endothelin-induced protein phosphorylation in cultured vascular smooth muscle cells. J Vasc Res. 1993 Sep-Oct;30(5):241–249. doi: 10.1159/000159002. [DOI] [PubMed] [Google Scholar]
  38. Wechezak A. R., Wight T. N., Viggers R. F., Sauvage L. R. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J Cell Physiol. 1989 Apr;139(1):136–146. doi: 10.1002/jcp.1041390120. [DOI] [PubMed] [Google Scholar]
  39. Xuan Y. T., Wang O. L., Whorton A. R. Regulation of endothelin-induced Ca2+ mobilization in smooth muscle cells by protein kinase C. Am J Physiol. 1994 Jun;266(6 Pt 1):C1560–C1567. doi: 10.1152/ajpcell.1994.266.6.C1560. [DOI] [PubMed] [Google Scholar]
  40. Zigmond S. H. Signal transduction and actin filament organization. Curr Opin Cell Biol. 1996 Feb;8(1):66–73. doi: 10.1016/s0955-0674(96)80050-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES