Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1557–1565. doi: 10.1172/JCI119679

Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor.

Y Abu-Amer 1, F P Ross 1, J Edwards 1, S L Teitelbaum 1
PMCID: PMC508337  PMID: 9294124

Abstract

Chronic bone infection, as attends periodontitis, is often complicated by severe osteolysis. While LPS is believed to be central to the pathogenesis of the osteolytic lesion, the mechanisms by which this bacteria-derived molecule promotes bone resorption are unknown. We find that LPS induces bone marrow macrophages (BMMs) to express c-src, a protooncogene product that we demonstrate is a specific marker of commitment to the osteoclast phenotype. We next turned to possible soluble mediators of LPS-induced c-src. Of a number of osteoclastogenic cytokines tested, only TNF-alpha mirrors the c-src-enhancing effect of LPS. Suggesting that LPS augmentation of c-src is TNF-mediated, endotoxin sequentially induces BMM expression of TNF, followed by c-src. TNF and c-src expression, by cultured BMMs derived from LPS-injected mice, reflects duration of exposure to circulating endotoxin, intimating that endotoxin's effect in vivo is also mediated by TNF. Consistent with these findings, thalidomide (which antagonizes TNF action) attenuates c-src induction by LPS. An anti-TNF antibody blocks LPS enhancement of c-src mRNA, validating the cytokine's modulating role in vitro. Using BMMs of TNF receptor-deleted mice, we demonstrate that TNF induction of c-src is transmitted through the cytokine's p55, but not p75, receptor. Most importantly, LPS administered to wild-type mice prompts osteoclast precursor differentiation, manifest by profound osteoclastogenesis in marrow cultured ex vivo, and by a profusion of marrow-residing cells expressing the osteoclast marker tartrate resistant acid phosphatase, in vivo. In contrast, LPS does not substantially enhance osteoclast proliferation in mice lacking the p55TNF receptor, confirming that LPS-induced osteoclastogenesis is mediated by TNF in vivo via this receptor. Thus, therapy targeting TNF and/or its p55 receptor presents itself as a means of preventing the osteolysis of chronic bacterial infection.

Full Text

The Full Text of this article is available as a PDF (650.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Amer Y., Bar-Shavit Z. Regulation of TNF-alpha release from bone marrow-derived macrophages by vitamin D. J Cell Biochem. 1994 Aug;55(4):435–444. doi: 10.1002/jcb.240550404. [DOI] [PubMed] [Google Scholar]
  2. Baroukh B., Saffar J. L. Identification of osteoclasts and their mononuclear precursors. A comparative histological and histochemical study in hamster periodontitis. J Periodontal Res. 1991 May;26(3 Pt 1):161–166. doi: 10.1111/j.1600-0765.1991.tb01640.x. [DOI] [PubMed] [Google Scholar]
  3. Beutler B., Krochin N., Milsark I. W., Luedke C., Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. doi: 10.1126/science.3754653. [DOI] [PubMed] [Google Scholar]
  4. Boyce B. F., Yoneda T., Lowe C., Soriano P., Mundy G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992 Oct;90(4):1622–1627. doi: 10.1172/JCI116032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brakebusch C., Nophar Y., Kemper O., Engelmann H., Wallach D. Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J. 1992 Mar;11(3):943–950. doi: 10.1002/j.1460-2075.1992.tb05133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carson R. E., Sayegh F. S., Fedi P. F., Jr Osteoclastic resorption of alveolar bone affected by periodontitis--correlation of light microscopic and scanning electron microscopic observations. J Periodontol. 1978 Aug;49(8):406–414. doi: 10.1902/jop.1978.49.8.406. [DOI] [PubMed] [Google Scholar]
  7. Clohisy D. R., Chappel J. C., Teitelbaum S. L. Bone marrow-derived mononuclear phagocytes autoregulate mannose receptor expression. J Biol Chem. 1989 Apr 5;264(10):5370–5377. [PubMed] [Google Scholar]
  8. Erickson S. L., de Sauvage F. J., Kikly K., Carver-Moore K., Pitts-Meek S., Gillett N., Sheehan K. C., Schreiber R. D., Goeddel D. V., Moore M. W. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature. 1994 Dec 8;372(6506):560–563. doi: 10.1038/372560a0. [DOI] [PubMed] [Google Scholar]
  9. Fahlman C., Jacobsen F. W., Veiby O. P., McNiece I. K., Blomhoff H. K., Jacobsen S. E. Tumor necrosis factor-alpha (TNF-alpha) potently enhances in vitro macrophage production from primitive murine hematopoietic progenitor cells in combination with stem cell factor and interleukin-7: novel stimulatory role of p55 TNF receptors. Blood. 1994 Sep 1;84(5):1528–1533. [PubMed] [Google Scholar]
  10. Grell M., Douni E., Wajant H., Löhden M., Clauss M., Maxeiner B., Georgopoulos S., Lesslauer W., Kollias G., Pfizenmaier K. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995 Dec 1;83(5):793–802. doi: 10.1016/0092-8674(95)90192-2. [DOI] [PubMed] [Google Scholar]
  11. Han J., Brown T., Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med. 1990 Feb 1;171(2):465–475. doi: 10.1084/jem.171.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hausmann E., Raisz L. G., Miller W. A. Endotoxin: stimulation of bone resorption in tissue culture. Science. 1970 May 15;168(3933):862–864. doi: 10.1126/science.168.3933.862. [DOI] [PubMed] [Google Scholar]
  13. Horne W. C., Neff L., Chatterjee D., Lomri A., Levy J. B., Baron R. Osteoclasts express high levels of pp60c-src in association with intracellular membranes. J Cell Biol. 1992 Nov;119(4):1003–1013. doi: 10.1083/jcb.119.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iino Y., Hopps R. M. The bone-resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch Oral Biol. 1984;29(1):59–63. doi: 10.1016/0003-9969(84)90043-8. [DOI] [PubMed] [Google Scholar]
  15. Kaji H., Sugimoto T., Kanatani M., Fukase M., Kumegawa M., Chihara K. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase. J Bone Miner Res. 1996 Jan;11(1):62–71. doi: 10.1002/jbmr.5650110110. [DOI] [PubMed] [Google Scholar]
  16. Kitazawa R., Kimble R. B., Vannice J. L., Kung V. T., Pacifici R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest. 1994 Dec;94(6):2397–2406. doi: 10.1172/JCI117606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lannigan F. J., O'Higgins P., Mcphie P. The cellular mechanism of ossicular erosion in chronic suppurative otitis media. J Laryngol Otol. 1993 Jan;107(1):12–16. doi: 10.1017/s0022215100122005. [DOI] [PubMed] [Google Scholar]
  19. Lewis M., Tartaglia L. A., Lee A., Bennett G. L., Rice G. C., Wong G. H., Chen E. Y., Goeddel D. V. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2830–2834. doi: 10.1073/pnas.88.7.2830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lipsich L. A., Lewis A. J., Brugge J. S. Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J Virol. 1983 Nov;48(2):352–360. doi: 10.1128/jvi.48.2.352-360.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Makonkawkeyoon S., Limson-Pobre R. N., Moreira A. L., Schauf V., Kaplan G. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5974–5978. doi: 10.1073/pnas.90.13.5974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moreira A. L., Sampaio E. P., Zmuidzinas A., Frindt P., Smith K. A., Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993 Jun 1;177(6):1675–1680. doi: 10.1084/jem.177.6.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mundy G. R. Role of cytokines in bone resorption. J Cell Biochem. 1993 Dec;53(4):296–300. doi: 10.1002/jcb.240530405. [DOI] [PubMed] [Google Scholar]
  24. Nair S. P., Meghji S., Wilson M., Reddi K., White P., Henderson B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun. 1996 Jul;64(7):2371–2380. doi: 10.1128/iai.64.7.2371-2380.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Passeri G., Girasole G., Manolagas S. C., Jilka R. L. Endogenous production of tumor necrosis factor by primary cultures of murine calvarial cells: influence on IL-6 production and osteoclast development. Bone Miner. 1994 Feb;24(2):109–126. doi: 10.1016/s0169-6009(08)80149-3. [DOI] [PubMed] [Google Scholar]
  26. Perkins S. L., Gibbons R., Kling S., Kahn A. J. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone. 1994 Jan-Feb;15(1):65–72. doi: 10.1016/8756-3282(94)90893-1. [DOI] [PubMed] [Google Scholar]
  27. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  28. Pfeilschifter J., Chenu C., Bird A., Mundy G. R., Roodman G. D. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res. 1989 Feb;4(1):113–118. doi: 10.1002/jbmr.5650040116. [DOI] [PubMed] [Google Scholar]
  29. Rietschel E. T., Brade H. Bacterial endotoxins. Sci Am. 1992 Aug;267(2):54–61. doi: 10.1038/scientificamerican0892-54. [DOI] [PubMed] [Google Scholar]
  30. Rothe J., Lesslauer W., Lötscher H., Lang Y., Koebel P., Köntgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993 Aug 26;364(6440):798–802. doi: 10.1038/364798a0. [DOI] [PubMed] [Google Scholar]
  31. Sheehan K. C., Pinckard J. K., Arthur C. D., Dehner L. P., Goeddel D. V., Schreiber R. D. Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. J Exp Med. 1995 Feb 1;181(2):607–617. doi: 10.1084/jem.181.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shioi A., Ross F. P., Teitelbaum S. L. Enrichment of generated murine osteoclasts. Calcif Tissue Int. 1994 Nov;55(5):387–394. doi: 10.1007/BF00299320. [DOI] [PubMed] [Google Scholar]
  33. Shuto T., Jimi E., Kukita T., Hirata M., Koga T. Granulocyte-macrophage colony stimulating factor suppresses lipopolysaccharide-induced osteoclast-like cell formation in mouse bone marrow cultures. Endocrinology. 1994 Feb;134(2):831–837. doi: 10.1210/endo.134.2.8299579. [DOI] [PubMed] [Google Scholar]
  34. Soriano P., Montgomery C., Geske R., Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991 Feb 22;64(4):693–702. doi: 10.1016/0092-8674(91)90499-o. [DOI] [PubMed] [Google Scholar]
  35. Sweet M. J., Hume D. A. Endotoxin signal transduction in macrophages. J Leukoc Biol. 1996 Jul;60(1):8–26. doi: 10.1002/jlb.60.1.8. [DOI] [PubMed] [Google Scholar]
  36. Tanaka S., Takahashi N., Udagawa N., Sasaki T., Fukui Y., Kurokawa T., Suda T. Osteoclasts express high levels of p60c-src, preferentially on ruffled border membranes. FEBS Lett. 1992 Nov 16;313(1):85–89. doi: 10.1016/0014-5793(92)81190-w. [DOI] [PubMed] [Google Scholar]
  37. Tartaglia L. A., Goeddel D. V., Reynolds C., Figari I. S., Weber R. F., Fendly B. M., Palladino M. A., Jr Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J Immunol. 1993 Nov 1;151(9):4637–4641. [PubMed] [Google Scholar]
  38. Tartaglia L. A., Goeddel D. V. Two TNF receptors. Immunol Today. 1992 May;13(5):151–153. doi: 10.1016/0167-5699(92)90116-O. [DOI] [PubMed] [Google Scholar]
  39. Teitelbaum S. L., Abu-Amer Y., Ross F. P. Molecular mechanisms of bone resorption. J Cell Biochem. 1995 Sep;59(1):1–10. doi: 10.1002/jcb.240590102. [DOI] [PubMed] [Google Scholar]
  40. Udagawa N., Takahashi N., Akatsu T., Sasaki T., Yamaguchi A., Kodama H., Martin T. J., Suda T. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989 Oct;125(4):1805–1813. doi: 10.1210/endo-125-4-1805. [DOI] [PubMed] [Google Scholar]
  41. Vandenabeele P., Declercq W., Beyaert R., Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995 Oct;5(10):392–399. doi: 10.1016/s0962-8924(00)89088-1. [DOI] [PubMed] [Google Scholar]
  42. Wong G. H., Tartaglia L. A., Lee M. S., Goeddel D. V. Antiviral activity of tumor necrosis factor is signaled through the 55-kDa type I TNF receptor [corrected]. J Immunol. 1992 Nov 15;149(10):3350–3353. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES