Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1596–1610. doi: 10.1172/JCI119684

Glucose activates the carboxyl methylation of gamma subunits of trimeric GTP-binding proteins in pancreatic beta cells. Modulation in vivo by calcium, GTP, and pertussis toxin.

A Kowluru 1, G Li 1, S A Metz 1
PMCID: PMC508342  PMID: 9294129

Abstract

The gamma subunits of trimeric G-proteins (gamma1, gamma2, gamma5, and gamma7 isoforms) were found to be methylated at their carboxyl termini in normal rat islets, human islets and pure beta [HIT-T15] cells. Of these, GTPgammaS significantly stimulated the carboxyl methylation selectively of gamma2 and gamma5 isoforms. Exposure of intact HIT cells to either of two receptor-independent agonists--a stimulatory concentration of glucose or a depolarizing concentration of K+--resulted in a rapid (within 30 s) and sustained (at least up to 60 min) stimulation of gamma subunit carboxyl methylation. Mastoparan, which directly activates G-proteins (and insulin secretion from beta cells), also stimulated the carboxyl methylation of gamma subunits in intact HIT cells. Stimulatory effects of glucose or K+ were not demonstrable after removal of extracellular Ca2+ or depletion of intracellular GTP, implying regulatory roles for calcium fluxes and GTP; however, the methyl transferase itself was not directly activated by either. The stimulatory effects of mastoparan were resistant to removal of extracellular Ca2+, implying a mechanism of action that is different from glucose or K+ but also suggesting that dissociation of the alphabetagamma trimer is conducive to gamma subunit carboxyl methylation. Indeed, pertussis toxin also markedly attenuated the stimulatory effects of glucose, K+ or mastoparan without altering the rise in intracellular calcium induced by glucose or K+. Glucose-induced carboxyl methylation of gamma2 and gamma5 isoforms was vitiated by coprovision of any of three structurally different cyclooxygenase inhibitors. Conversely, exogenous PGE2, which activates Gi and Go in HIT cells and which thereby would dissociate alpha from beta(gamma), stimulated the carboxyl methylation of gamma2 and gamma5 isoforms and reversed the inhibition of glucose-stimulated carboxyl methylation of gamma subunits elicited by cyclooxygenase inhibitors. These data indicate that gamma subunits of trimeric G-proteins undergo a glucose- and calcium-regulated methylation-demethylation cycle in insulin-secreting cells, findings that may imply an important role in beta cell function. Furthermore, this is the first example of the regulation of the posttranslational modification of G-protein gamma subunits via nonreceptor-mediated activation mechanisms, which are apparently dependent on calcium influx and the consequent activation of phospholipases releasing arachidonic acid.

Full Text

The Full Text of this article is available as a PDF (280.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano M., Mukai H., Ono Y., Chihara K., Matsui T., Hamajima Y., Okawa K., Iwamatsu A., Kaibuchi K. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 1996 Feb 2;271(5249):648–650. doi: 10.1126/science.271.5249.648. [DOI] [PubMed] [Google Scholar]
  2. Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell. 1992 Dec 24;71(7):1069–1072. doi: 10.1016/s0092-8674(05)80056-x. [DOI] [PubMed] [Google Scholar]
  3. Blank J. L., Brattain K. A., Exton J. H. Activation of cytosolic phosphoinositide phospholipase C by G-protein beta gamma subunits. J Biol Chem. 1992 Nov 15;267(32):23069–23075. [PubMed] [Google Scholar]
  4. Bokoch G. M. Interplay between Ras-related and heterotrimeric GTP binding proteins: lifestyles of the BIG and little. FASEB J. 1996 Sep;10(11):1290–1295. doi: 10.1096/fasebj.10.11.8836042. [DOI] [PubMed] [Google Scholar]
  5. Bond R. A., Leff P., Johnson T. D., Milano C. A., Rockman H. A., McMinn T. R., Apparsundaram S., Hyek M. F., Kenakin T. P., Allen L. F. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995 Mar 16;374(6519):272–276. doi: 10.1038/374272a0. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Campillo J. E., Ashcroft S. J. Protein carboxymethylation in rat islets of Langerhans. FEBS Lett. 1982 Feb 8;138(1):71–75. doi: 10.1016/0014-5793(82)80397-9. [DOI] [PubMed] [Google Scholar]
  8. Choi G., Gao B., Gibbons W. A. Arachidonic acid as a feedback inhibitor of phospholipid methylation in rat polymorphonuclear leucocytes. Biochem Soc Trans. 1991 Aug;19(3):308S–308S. doi: 10.1042/bst019308s. [DOI] [PubMed] [Google Scholar]
  9. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  10. Colombo M. I., Inglese J., D'Souza-Schorey C., Beron W., Stahl P. D. Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic. J Biol Chem. 1995 Oct 13;270(41):24564–24571. doi: 10.1074/jbc.270.41.24564. [DOI] [PubMed] [Google Scholar]
  11. Detimary P., Van den Berghe G., Henquin J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem. 1996 Aug 23;271(34):20559–20565. doi: 10.1074/jbc.271.34.20559. [DOI] [PubMed] [Google Scholar]
  12. Eddlestone G. T., Komatsu M., Shen L., Sharp G. W. Mastoparan increases the intracellular free calcium concentration in two insulin-secreting cell lines by inhibition of ATP-sensitive potassium channels. Mol Pharmacol. 1995 Apr;47(4):787–797. [PubMed] [Google Scholar]
  13. Fields T. A., Casey P. J. Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. J Biol Chem. 1995 Sep 29;270(39):23119–23125. doi: 10.1074/jbc.270.39.23119. [DOI] [PubMed] [Google Scholar]
  14. Fukada Y., Matsuda T., Kokame K., Takao T., Shimonishi Y., Akino T., Yoshizawa T. Effects of carboxyl methylation of photoreceptor G protein gamma-subunit in visual transduction. J Biol Chem. 1994 Feb 18;269(7):5163–5170. [PubMed] [Google Scholar]
  15. Gillison S. L., Sharp G. W. ADP ribosylation by cholera toxin identifies three G-proteins that are activated by the galanin receptor. Studies with RINm5F cell membranes. Diabetes. 1994 Jan;43(1):24–32. doi: 10.2337/diab.43.1.24. [DOI] [PubMed] [Google Scholar]
  16. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hedeskov C. J. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980 Apr;60(2):442–509. doi: 10.1152/physrev.1980.60.2.442. [DOI] [PubMed] [Google Scholar]
  19. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  20. Hohenegger M., Mitterauer T., Voss T., Nanoff C., Freissmuth M. Thiophosphorylation of the G protein beta subunit in human platelet membranes: evidence against a direct phosphate transfer reaction to G alpha subunits. Mol Pharmacol. 1996 Jan;49(1):73–80. [PubMed] [Google Scholar]
  21. Ikeda S. R. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996 Mar 21;380(6571):255–258. doi: 10.1038/380255a0. [DOI] [PubMed] [Google Scholar]
  22. Ito A., Satoh T., Kaziro Y., Itoh H. G protein beta gamma subunit activates Ras, Raf, and MAP kinase in HEK 293 cells. FEBS Lett. 1995 Jul 10;368(1):183–187. doi: 10.1016/0014-5793(95)00643-n. [DOI] [PubMed] [Google Scholar]
  23. Kisselev O., Ermolaeva M., Gautam N. Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. J Biol Chem. 1995 Oct 27;270(43):25356–25358. doi: 10.1074/jbc.270.43.25356. [DOI] [PubMed] [Google Scholar]
  24. Komatsu M., McDermott A. M., Gillison S. L., Sharp G. W. Mastoparan stimulates exocytosis at a Ca(2+)-independent late site in stimulus-secretion coupling. Studies with the RINm5F beta-cell line. J Biol Chem. 1993 Nov 5;268(31):23297–23306. [PubMed] [Google Scholar]
  25. Konrad R. J., Young R. A., Record R. D., Smith R. M., Butkerait P., Manning D., Jarett L., Wolf B. A. The heterotrimeric G-protein Gi is localized to the insulin secretory granules of beta-cells and is involved in insulin exocytosis. J Biol Chem. 1995 May 26;270(21):12869–12876. doi: 10.1074/jbc.270.21.12869. [DOI] [PubMed] [Google Scholar]
  26. Kowluru A., Kowluru R. A., Yamazaki A. Functional alterations of G-proteins in diabetic rat retina: a possible explanation for the early visual abnormalities in diabetes mellitus. Diabetologia. 1992 Jul;35(7):624–631. doi: 10.1007/BF00400253. [DOI] [PubMed] [Google Scholar]
  27. Kowluru A., Metz S. A. Characterization of nucleoside diphosphokinase activity in human and rodent pancreatic beta cells: evidence for its role in the formation of guanosine triphosphate, a permissive factor for nutrient-induced insulin secretion. Biochemistry. 1994 Oct 18;33(41):12495–12503. doi: 10.1021/bi00207a017. [DOI] [PubMed] [Google Scholar]
  28. Kowluru A., Metz S. A. Regulation of guanine-nucleotide binding proteins in islet subcellular fractions by phospholipase-derived lipid mediators of insulin secretion. Biochim Biophys Acta. 1994 Jul 21;1222(3):360–368. doi: 10.1016/0167-4889(94)90041-8. [DOI] [PubMed] [Google Scholar]
  29. Kowluru A., Metz S. A. Stimulation by prostaglandin E2 of a high-affinity GTPase in the secretory granules of normal rat and human pancreatic islets. Biochem J. 1994 Jan 15;297(Pt 2):399–406. doi: 10.1042/bj2970399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kowluru A., Rabaglia M. E., Muse K. E., Metz S. A. Subcellular localization and kinetic characterization of guanine nucleotide binding proteins in normal rat and human pancreatic islets and transformed beta cells. Biochim Biophys Acta. 1994 Jul 21;1222(3):348–359. doi: 10.1016/0167-4889(94)90040-x. [DOI] [PubMed] [Google Scholar]
  31. Kowluru A., Rana R. S., MacDonald M. J. Phospholipid methyltransferase activity in pancreatic islets: activation by calcium. Arch Biochem Biophys. 1985 Oct;242(1):72–81. doi: 10.1016/0003-9861(85)90481-3. [DOI] [PubMed] [Google Scholar]
  32. Kowluru A., Seavey S. E., Li G., Sorenson R. L., Weinhaus A. J., Nesher R., Rabaglia M. E., Vadakekalam J., Metz S. A. Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion. J Clin Invest. 1996 Jul 15;98(2):540–555. doi: 10.1172/JCI118822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kowluru A., Seavey S. E., Rabaglia M. E., Nesher R., Metz S. A. Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. Endocrinology. 1996 Jun;137(6):2315–2323. doi: 10.1210/endo.137.6.8641181. [DOI] [PubMed] [Google Scholar]
  34. Kowluru A., Seavey S. E., Rhodes C. J., Metz S. A. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent beta cells. Biochem J. 1996 Jan 1;313(Pt 1):97–107. doi: 10.1042/bj3130097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kumagai N., Morii N., Ishizaki T., Watanabe N., Fujisawa K., Saito Y., Narumiya S. Lysophosphatidic acid-induced activation of protein Ser/Thr kinases in cultured rat 3Y1 fibroblasts. Possible involvement in rho p21-mediated signalling. FEBS Lett. 1995 Jun 5;366(1):11–16. doi: 10.1016/0014-5793(95)00478-r. [DOI] [PubMed] [Google Scholar]
  36. Lederer E. D., Jacobs A. A., Hoffman J. L., Harding G. B., Robishaw J. D., McLeish K. R. Role of carboxylmethylation in chemoattractant receptor-stimulated G protein activation and functional responses. Biochem Biophys Res Commun. 1994 May 16;200(3):1604–1614. doi: 10.1006/bbrc.1994.1635. [DOI] [PubMed] [Google Scholar]
  37. Lefkowitz R. J. G protein-coupled receptor kinases. Cell. 1993 Aug 13;74(3):409–412. doi: 10.1016/0092-8674(93)80042-d. [DOI] [PubMed] [Google Scholar]
  38. Leiser M., Efrat S., Fleischer N. Evidence that Rap1 carboxylmethylation is involved in regulated insulin secretion. Endocrinology. 1995 Jun;136(6):2521–2530. doi: 10.1210/endo.136.6.7750474. [DOI] [PubMed] [Google Scholar]
  39. Li G., Hidaka H., Wollheim C. B. Inhibition of voltage-gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62: comparison with antagonists of calmodulin and L-type Ca2+ channels. Mol Pharmacol. 1992 Sep;42(3):489–488. [PubMed] [Google Scholar]
  40. Li G., Kowluru A., Metz S. A. Characterization of prenylcysteine methyltransferase in insulin-secreting cells. Biochem J. 1996 May 15;316(Pt 1):345–351. doi: 10.1042/bj3160345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Malcolm K. C., Elliott C. M., Exton J. H. Evidence for Rho-mediated agonist stimulation of phospholipase D in rat1 fibroblasts. Effects of Clostridium botulinum C3 exoenzyme. J Biol Chem. 1996 May 31;271(22):13135–13139. doi: 10.1074/jbc.271.22.13135. [DOI] [PubMed] [Google Scholar]
  42. Manser E., Leung T., Salihuddin H., Tan L., Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993 May 27;363(6427):364–367. doi: 10.1038/363364a0. [DOI] [PubMed] [Google Scholar]
  43. Metz S. A., Rabaglia M. E., Pintar T. J. Selective inhibitors of GTP synthesis impede exocytotic insulin release from intact rat islets. J Biol Chem. 1992 Jun 25;267(18):12517–12527. [PubMed] [Google Scholar]
  44. Metz S. A., Rabaglia M. E., Stock J. B., Kowluru A. Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem J. 1993 Oct 1;295(Pt 1):31–40. doi: 10.1042/bj2950031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Metz S. A., Robertson R. P., Fujimoto W. Y. Inhibition of prostaglandin E synthesis augments glucose-induced insulin secretion is cultured pancreas. Diabetes. 1981 Jul;30(7):551–557. doi: 10.2337/diab.30.7.551. [DOI] [PubMed] [Google Scholar]
  46. Morishita R., Fukada Y., Kokame K., Yoshizawa T., Masuda K., Niwa M., Kato K., Asano T. Identification and isolation of common and tissue-specific geranylgeranylated gamma subunits of guanine-nucleotide-binding regulatory proteins in various tissues. Eur J Biochem. 1992 Dec 15;210(3):1061–1069. doi: 10.1111/j.1432-1033.1992.tb17512.x. [DOI] [PubMed] [Google Scholar]
  47. Morishita R., Nakayama H., Isobe T., Matsuda T., Hashimoto Y., Okano T., Fukada Y., Mizuno K., Ohno S., Kozawa O. Primary structure of a gamma subunit of G protein, gamma 12, and its phosphorylation by protein kinase C. J Biol Chem. 1995 Dec 8;270(49):29469–29475. doi: 10.1074/jbc.270.49.29469. [DOI] [PubMed] [Google Scholar]
  48. Muntz K. H., Sternweis P. C., Gilman A. G., Mumby S. M. Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Mol Biol Cell. 1992 Jan;3(1):49–61. doi: 10.1091/mbc.3.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Olson S. C., Tyagi S. R., Lambeth J. D. Fluoride activates diradylglycerol and superoxide generation in human neutrophils via PLD/PA phosphohydrolase-dependent and -independent pathways. FEBS Lett. 1990 Oct 15;272(1-2):19–24. doi: 10.1016/0014-5793(90)80439-p. [DOI] [PubMed] [Google Scholar]
  50. Parish C. A., Rando R. R. Functional significance of G protein carboxymethylation. Biochemistry. 1994 Aug 23;33(33):9986–9991. doi: 10.1021/bi00199a023. [DOI] [PubMed] [Google Scholar]
  51. Parish C. A., Smrcka A. V., Rando R. R. Functional significance of beta gamma-subunit carboxymethylation for the activation of phospholipase C and phosphoinositide 3-kinase. Biochemistry. 1995 Jun 13;34(23):7722–7727. doi: 10.1021/bi00023a019. [DOI] [PubMed] [Google Scholar]
  52. Parish C. A., Smrcka A. V., Rando R. R. The role of G protein methylation in the function of a geranylgeranylated beta gamma isoform. Biochemistry. 1996 Jun 11;35(23):7499–7505. doi: 10.1021/bi960271f. [DOI] [PubMed] [Google Scholar]
  53. Philips M. R., Staud R., Pillinger M., Feoktistov A., Volker C., Stock J. B., Weissmann G. Activation-dependent carboxyl methylation of neutrophil G-protein gamma subunit. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2283–2287. doi: 10.1073/pnas.92.6.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  55. Rando R. R. Chemical biology of protein isoprenylation/methylation. Biochim Biophys Acta. 1996 Mar 29;1300(1):5–16. doi: 10.1016/0005-2760(95)00233-2. [DOI] [PubMed] [Google Scholar]
  56. Ray K., Kunsch C., Bonner L. M., Robishaw J. D. Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem. 1995 Sep 15;270(37):21765–21771. doi: 10.1074/jbc.270.37.21765. [DOI] [PubMed] [Google Scholar]
  57. Robertson R. P., Chen M. A role for prostaglandin E in defective insulin secretion and carbohydrate intolerance in diabetes mellitus. J Clin Invest. 1977 Sep;60(3):747–753. doi: 10.1172/JCI108827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Robertson R. P., Gavareski D. J., Porte D., Jr, Bierman E. L. Inhibition of in vivo insulin secretion by prostaglandin E1. J Clin Invest. 1974 Aug;54(2):310–315. doi: 10.1172/JCI107766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Robertson R. P., Seaquist E. R., Walseth T. F. G proteins and modulation of insulin secretion. Diabetes. 1991 Jan;40(1):1–6. doi: 10.2337/diab.40.1.1. [DOI] [PubMed] [Google Scholar]
  60. Robishaw J. D., Balcueva E. A. Preparation, characterization, and use of antibodies with specificity for G-protein gamma subunits. Methods Enzymol. 1994;237:498–509. doi: 10.1016/s0076-6879(94)37086-9. [DOI] [PubMed] [Google Scholar]
  61. Seaquist E. R., Walseth T. F., Redmon J. B., Robertson R. P. G-protein regulation of insulin secretion. J Lab Clin Med. 1994 Mar;123(3):338–345. [PubMed] [Google Scholar]
  62. Smrcka A. V., Sternweis P. C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993 May 5;268(13):9667–9674. [PubMed] [Google Scholar]
  63. Stephens L., Smrcka A., Cooke F. T., Jackson T. R., Sternweis P. C., Hawkins P. T. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell. 1994 Apr 8;77(1):83–93. doi: 10.1016/0092-8674(94)90237-2. [DOI] [PubMed] [Google Scholar]
  64. Takai Y., Kaibuchi K., Kikuchi A., Kawata M. Small GTP-binding proteins. Int Rev Cytol. 1992;133:187–230. doi: 10.1016/s0074-7696(08)61861-6. [DOI] [PubMed] [Google Scholar]
  65. Tan E. W., Rando R. R. Identification of an isoprenylated cysteine methyl ester hydrolase activity in bovine rod outer segment membranes. Biochemistry. 1992 Jun 23;31(24):5572–5578. doi: 10.1021/bi00139a021. [DOI] [PubMed] [Google Scholar]
  66. Tolias K. F., Cantley L. C., Carpenter C. L. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995 Jul 28;270(30):17656–17659. doi: 10.1074/jbc.270.30.17656. [DOI] [PubMed] [Google Scholar]
  67. Turk J., Hughes J. H., Easom R. A., Wolf B. A., Scharp D. W., Lacy P. E., McDaniel M. L. Arachidonic acid metabolism and insulin secretion by isolated human pancreatic islets. Diabetes. 1988 Jul;37(7):992–996. doi: 10.2337/diab.37.7.992. [DOI] [PubMed] [Google Scholar]
  68. Vadakekalam J., Rabaglia M. E., Chen Q. H., Metz S. A. Role for GTP in glucose-induced phospholipase C activation in pancreatic islets. Am J Physiol. 1996 Jul;271(1 Pt 1):E85–E95. doi: 10.1152/ajpendo.1996.271.1.E85. [DOI] [PubMed] [Google Scholar]
  69. Wedegaertner P. B., Wilson P. T., Bourne H. R. Lipid modifications of trimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):503–506. doi: 10.1074/jbc.270.2.503. [DOI] [PubMed] [Google Scholar]
  70. Wieland T., Nürnberg B., Ulibarri I., Kaldenberg-Stasch S., Schultz G., Jakobs K. H. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein beta-subunits. Characterization of the phosphorylated amino acid. J Biol Chem. 1993 Aug 25;268(24):18111–18118. [PubMed] [Google Scholar]
  71. Wieland T., Ronzani M., Jakobs K. H. Stimulation and inhibition of human platelet adenylylcyclase by thiophosphorylated transducin beta gamma-subunits. J Biol Chem. 1992 Oct 15;267(29):20791–20797. [PubMed] [Google Scholar]
  72. Wolf B. A., Pasquale S. M., Turk J. Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry. 1991 Jul 2;30(26):6372–6379. doi: 10.1021/bi00240a004. [DOI] [PubMed] [Google Scholar]
  73. Zhang S., Han J., Sells M. A., Chernoff J., Knaus U. G., Ulevitch R. J., Bokoch G. M. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem. 1995 Oct 13;270(41):23934–23936. doi: 10.1074/jbc.270.41.23934. [DOI] [PubMed] [Google Scholar]
  74. Zigman J. M., Westermark G. T., LaMendola J., Steiner D. F. Expression of cone transducin, Gz alpha, and other G-protein alpha-subunit messenger ribonucleic acids in pancreatic islets. Endocrinology. 1994 Jul;135(1):31–37. doi: 10.1210/endo.135.1.8013366. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES