Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1623–1633. doi: 10.1172/JCI119686

Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist.

S K Mahata 1, D T O'Connor 1, M Mahata 1, S H Yoo 1, L Taupenot 1, H Wu 1, B M Gill 1, R J Parmer 1
PMCID: PMC508344  PMID: 9294131

Abstract

Catecholamine secretory vesicle core proteins (chromogranins) contain an activity that inhibits catecholamine release, but the identity of the responsible peptide has been elusive. Size-fractionated chromogranins antagonized nicotinic cholinergic-stimulated catecholamine secretion; the inhibitor was enriched in processed chromogranin fragments, and was liberated from purified chromogranin A. Of 15 synthetic peptides spanning approximately 80% of chromogranin A, one (bovine chromogranin A344-364 [RSMRLSFRARGYGFRGPGLQL], or catestatin) was a potent, dose-dependent (IC50 approximately 200 nM), reversible secretory inhibitor on pheochromocytoma and adrenal chromaffin cells, as well as noradrenergic neurites. An antibody directed against this peptide blocked the inhibitory effect of chromogranin A proteolytic fragments on nicotinic-stimulated catecholamine secretion. This region of chromogranin A is extensively processed within chromaffin vesicles in vivo. The inhibitory effect was specific for nicotinic cholinergic stimulation of catecholamine release, and was shared by this chromogranin A region from several species. Nicotinic cationic (Na+, Ca2+) signal transduction was specifically disrupted by catestatin. Even high-dose nicotine failed to overcome the inhibition, suggesting noncompetitive nicotinic antagonism. This small domain within chromogranin A may contribute to a novel, autocrine, homeostatic (negative-feedback) mechanism controlling catecholamine release from chromaffin cells and neurons.

Full Text

The Full Text of this article is available as a PDF (505.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aardal S., Helle K. B. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept. 1992 Sep 3;41(1):9–18. doi: 10.1016/0167-0115(92)90509-s. [DOI] [PubMed] [Google Scholar]
  2. Amy C., Kirshner N. 22Na+ uptake and catecholamine secretion by primary cultures of adrenal medulla cells. J Neurochem. 1982 Jul;39(1):132–142. doi: 10.1111/j.1471-4159.1982.tb04711.x. [DOI] [PubMed] [Google Scholar]
  3. Arden S. D., Rutherford N. G., Guest P. C., Curry W. J., Bailyes E. M., Johnston C. F., Hutton J. C. The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J. 1994 Mar 15;298(Pt 3):521–528. doi: 10.1042/bj2980521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bader M. F., Thiersé D., Aunis D., Ahnert-Hilger G., Gratzl M. Characterization of hormone and protein release from alpha-toxin-permeabilized chromaffin cells in primary culture. J Biol Chem. 1986 May 5;261(13):5777–5783. [PubMed] [Google Scholar]
  5. Barbosa J. A., Gill B. M., Takiyyuddin M. A., O'Connor D. T. Chromogranin A: posttranslational modifications in secretory granules. Endocrinology. 1991 Jan;128(1):174–190. doi: 10.1210/endo-128-1-174. [DOI] [PubMed] [Google Scholar]
  6. Benedum U. M., Baeuerle P. A., Konecki D. S., Frank R., Powell J., Mallet J., Huttner W. B. The primary structure of bovine chromogranin A: a representative of a class of acidic secretory proteins common to a variety of peptidergic cells. EMBO J. 1986 Jul;5(7):1495–1502. doi: 10.1002/j.1460-2075.1986.tb04388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blanton M. P., Li Y. M., Stimson E. R., Maggio J. E., Cohen J. B. Agonist-induced photoincorporation of a p-benzoylphenylalanine derivative of substance P into membrane-spanning region 2 of the Torpedo nicotinic acetylcholine receptor delta subunit. Mol Pharmacol. 1994 Dec;46(6):1048–1055. [PubMed] [Google Scholar]
  8. Blaschko H., Comline R. S., Schneider F. H., Silver M., Smith A. D. Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature. 1967 Jul 1;215(5096):58–59. doi: 10.1038/215058a0. [DOI] [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  10. Chattopadhyay N., Mithal A., Brown E. M. The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev. 1996 Aug;17(4):289–307. doi: 10.1210/edrv-17-4-289. [DOI] [PubMed] [Google Scholar]
  11. Cheung N. S., Karlsson P., Wang J. X., Bienert M., Oehme P., Livett B. G. Functional studies with substance P analogues: effects of N-terminal, C-terminal, and C-terminus-extended analogues of substance P on nicotine-induced secretion and desensitization in cultured bovine adrenal chromaffin cells. J Neurochem. 1994 Jun;62(6):2246–2253. doi: 10.1046/j.1471-4159.1994.62062246.x. [DOI] [PubMed] [Google Scholar]
  12. Curry W. J., Shaw C., Johnston C. F., Thim L., Buchanan K. D. Isolation and primary structure of a novel chromogranin A-derived peptide, WE-14, from a human midgut carcinoid tumour. FEBS Lett. 1992 Apr 27;301(3):319–321. doi: 10.1016/0014-5793(92)80266-j. [DOI] [PubMed] [Google Scholar]
  13. Dillen L., Miserez B., Claeys M., Aunis D., De Potter W. Posttranslational processing of proenkephalins and chromogranins/secretogranins. Neurochem Int. 1993 Apr;22(4):315–352. doi: 10.1016/0197-0186(93)90016-x. [DOI] [PubMed] [Google Scholar]
  14. Drees B. M., Hamilton J. W. Processing of chromogranin A by bovine parathyroid secretory granules: production and secretion of N-terminal fragments. Endocrinology. 1994 May;134(5):2057–2063. doi: 10.1210/endo.134.5.8156905. [DOI] [PubMed] [Google Scholar]
  15. Drees B. M., Rouse J., Johnson J., Hamilton J. W. Bovine parathyroid glands secrete a 26-kDa N-terminal fragment of chromogranin-A which inhibits parathyroid cell secretion. Endocrinology. 1991 Dec;129(6):3381–3387. doi: 10.1210/endo-129-6-3381. [DOI] [PubMed] [Google Scholar]
  16. Fasciotto B. H., Trauss C. A., Greeley G. H., Cohn D. V. Parastatin (porcine chromogranin A347-419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology. 1993 Aug;133(2):461–466. doi: 10.1210/endo.133.2.8344192. [DOI] [PubMed] [Google Scholar]
  17. Galindo E., Mendez M., Calvo S., Gonzalez-Garcia C., Ceña V., Hubert P., Bader M. F., Aunis D. Chromostatin receptors control calcium channel activity in adrenal chromaffin cells. J Biol Chem. 1992 Jan 5;267(1):407–412. [PubMed] [Google Scholar]
  18. Galindo E., Rill A., Bader M. F., Aunis D. Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1426–1430. doi: 10.1073/pnas.88.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galindo E., Rill A., Bader M. F., Aunis D. Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1426–1430. doi: 10.1073/pnas.88.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gill B. M., Barbosa J. A., Hogue-Angeletti R., Varki N., O'Connor D. T. Chromogranin A epitopes: clues from synthetic peptides and peptide mapping. Neuropeptides. 1992 Feb;21(2):105–118. doi: 10.1016/0143-4179(92)90521-w. [DOI] [PubMed] [Google Scholar]
  21. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hagiwara D., Miyake H., Morimoto H., Murai M., Fujii T., Matsuo M. Studies on neurokinin antagonists. 1. The design of novel tripeptides possessing the glutaminyl-D-tryptophylphenylalanine sequence as substance P antagonists. J Med Chem. 1992 May 29;35(11):2015–2025. doi: 10.1021/jm00089a011. [DOI] [PubMed] [Google Scholar]
  23. Helle K. B., Marley P. D., Angeletti R. H., Aunis D., Galindo E., Small D. H., Livett B. G. Chromogranin A: secretion of processed products from the stimulated retrogradely perfused bovine adrenal gland. J Neuroendocrinol. 1993 Aug;5(4):413–420. doi: 10.1111/j.1365-2826.1993.tb00502.x. [DOI] [PubMed] [Google Scholar]
  24. Helle K. B., Serck-Hanssen G., Aardal S. Functional aspects of the adrenal medullary chromogranins. Neurochem Int. 1993 Apr;22(4):353–360. doi: 10.1016/0197-0186(93)90017-y. [DOI] [PubMed] [Google Scholar]
  25. Helman L. J., Ahn T. G., Levine M. A., Allison A., Cohen P. S., Cooper M. J., Cohn D. V., Israel M. A. Molecular cloning and primary structure of human chromogranin A (secretory protein I) cDNA. J Biol Chem. 1988 Aug 15;263(23):11559–11563. [PubMed] [Google Scholar]
  26. Hoflehner J., Eder U., Laslop A., Seidah N. G., Fischer-Colbrie R., Winkler H. Processing of secretogranin II by prohormone convertases: importance of PC1 in generation of secretoneurin. FEBS Lett. 1995 Mar 6;360(3):294–298. doi: 10.1016/0014-5793(95)00127-u. [DOI] [PubMed] [Google Scholar]
  27. Holst J. J., Ostenson C. G., Harling H., Messell T. Porcine pancreastatin has no effect on endocrine secretion from the pig pancreas. Diabetologia. 1990 Jul;33(7):403–406. doi: 10.1007/BF00404088. [DOI] [PubMed] [Google Scholar]
  28. Hutton J. C., Davidson H. W., Grimaldi K. A., Peshavaria M. Biosynthesis of betagranin in pancreatic beta-cells. Identification of a chromogranin A-like precursor and its parallel processing with proinsulin. Biochem J. 1987 Jun 1;244(2):449–456. doi: 10.1042/bj2440449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Iacangelo A. L., Fischer-Colbrie R., Koller K. J., Brownstein M. J., Eiden L. E. The sequence of porcine chromogranin A messenger RNA demonstrates chromogranin A can serve as the precursor for the biologically active hormone, pancreastatin. Endocrinology. 1988 May;122(5):2339–2341. doi: 10.1210/endo-122-5-2339. [DOI] [PubMed] [Google Scholar]
  30. Iacangelo A., Affolter H. U., Eiden L. E., Herbert E., Grimes M. Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues. Nature. 1986 Sep 4;323(6083):82–86. doi: 10.1038/323082a0. [DOI] [PubMed] [Google Scholar]
  31. Iacangelo A., Okayama H., Eiden L. E. Primary structure of rat chromogranin A and distribution of its mRNA. FEBS Lett. 1988 Jan 25;227(2):115–121. doi: 10.1016/0014-5793(88)80880-9. [DOI] [PubMed] [Google Scholar]
  32. Inoue K., Nakazawa K., Ohara-Imaizumi M., Obama T., Fujimori K., Takanaka A. Antagonism by reactive blue 2 but not by brilliant blue G of extracellular ATP-evoked responses in PC12 phaeochromocytoma cells. Br J Pharmacol. 1991 Apr;102(4):851–854. doi: 10.1111/j.1476-5381.1991.tb12265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Khalil Z., Marley P. D., Livett B. G. Effect of substance P on nicotine-induced desensitization of cultured bovine adrenal chromaffin cells: possible receptor subtypes. Brain Res. 1988 Sep 6;459(2):282–288. doi: 10.1016/0006-8993(88)90644-0. [DOI] [PubMed] [Google Scholar]
  34. Kirchmair R., Leitner B., Fischer-Colbrie R., Marksteiner J., Hogue-Angeletti R., Winkler H. Large variations in the proteolytic formation of a chromogranin A-derived peptide (GE-25) in neuroendocrine tissues. Biochem J. 1995 Aug 15;310(Pt 1):331–336. doi: 10.1042/bj3100331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Konecki D. S., Benedum U. M., Gerdes H. H., Huttner W. B. The primary structure of human chromogranin A and pancreastatin. J Biol Chem. 1987 Dec 15;262(35):17026–17030. [PubMed] [Google Scholar]
  36. Lin L. F., Bott M. C., Kao L. S., Westhead E. W. ATP stimulated catecholamine secretion: response in perfused adrenal glands and a subpopulation of cultured chromaffin cells. Neurosci Lett. 1995 Jan 9;183(3):147–150. doi: 10.1016/0304-3940(94)11136-7. [DOI] [PubMed] [Google Scholar]
  37. Livett B. G., Marley P. D. Noncholinergic control of adrenal catecholamine secretion. J Anat. 1993 Oct;183(Pt 2):277–289. [PMC free article] [PubMed] [Google Scholar]
  38. Madhok T. C., Sharp B. M. Nerve growth factor enhances [3H]nicotine binding to a nicotinic cholinergic receptor on PC 12 cells. Endocrinology. 1992 Feb;130(2):825–830. doi: 10.1210/endo.130.2.1733730. [DOI] [PubMed] [Google Scholar]
  39. Mahata M., Mahata S. K., Parmer R. J., O'Connor D. T. Vesicular monoamine transport inhibitors. Novel action at calcium channels to prevent catecholamine secretion. Hypertension. 1996 Sep;28(3):414–420. doi: 10.1161/01.hyp.28.3.414. [DOI] [PubMed] [Google Scholar]
  40. McLane K. E., Wu X. D., Conti-Tronconi B. M. Identification of a brain acetylcholine receptor alpha subunit able to bind alpha-bungarotoxin. J Biol Chem. 1990 Jun 15;265(17):9816–9824. [PubMed] [Google Scholar]
  41. Metz-Boutigue M. H., Garcia-Sablone P., Hogue-Angeletti R., Aunis D. Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem. 1993 Oct 1;217(1):247–257. doi: 10.1111/j.1432-1033.1993.tb18240.x. [DOI] [PubMed] [Google Scholar]
  42. Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed] [Google Scholar]
  44. O'Connor D. T., Deftos L. J. Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med. 1986 May 1;314(18):1145–1151. doi: 10.1056/NEJM198605013141803. [DOI] [PubMed] [Google Scholar]
  45. O'Connor D. T., Frigon R. P. Chromogranin A, the major catecholamine storage vesicle soluble protein. Multiple size forms, subcellular storage, and regional distribution in chromaffin and nervous tissue elucidated by radioimmunoassay. J Biol Chem. 1984 Mar 10;259(5):3237–3247. [PubMed] [Google Scholar]
  46. O'Connor D. T., Frigon R. P., Sokoloff R. L. Human chromogranin A. Purification and characterization from catecholamine storage vesicles of human pheochromocytoma. Hypertension. 1984 Jan-Feb;6(1):2–12. doi: 10.1161/01.hyp.6.1.2. [DOI] [PubMed] [Google Scholar]
  47. Pandol S. J., Schoeffield M. S., Fimmel C. J., Muallem S. The agonist-sensitive calcium pool in the pancreatic acinar cell. Activation of plasma membrane Ca2+ influx mechanism. J Biol Chem. 1987 Dec 15;262(35):16963–16968. [PubMed] [Google Scholar]
  48. Parmer R. J., Koop A. H., Handa M. T., O'Connor D. T. Molecular cloning of chromogranin A from rat pheochromocytoma cells. Hypertension. 1989 Oct;14(4):435–444. doi: 10.1161/01.hyp.14.4.435. [DOI] [PubMed] [Google Scholar]
  49. Parmer R. J., Miles L. A., Xi X. P., Gill B. M., Wu H. J., O'Connor D. T. Processing of chromaffin granule proteins: a profusion of proteases? Neurochem Int. 1993 Apr;22(4):361–367. doi: 10.1016/0197-0186(93)90018-z. [DOI] [PubMed] [Google Scholar]
  50. Parmer R. J., Xi X. P., Wu H. J., Helman L. J., Petz L. N. Secretory protein traffic. Chromogranin A contains a dominant targeting signal for the regulated pathway. J Clin Invest. 1993 Aug;92(2):1042–1054. doi: 10.1172/JCI116609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rogers S. W., Mandelzys A., Deneris E. S., Cooper E., Heinemann S. The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J Neurosci. 1992 Dec;12(12):4611–4623. doi: 10.1523/JNEUROSCI.12-12-04611.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schneider F. H., Smith A. D., Winkler H. Secretion from the adrenal medulla: biochemical evidence for exocytosis. Br J Pharmacol Chemother. 1967 Sep;31(1):94–104. doi: 10.1111/j.1476-5381.1967.tb01980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sigafoos J., Chestnut W. G., Merrill B. M., Taylor L. C., Diliberto E. J., Jr, Viveros O. H. Novel peptides from adrenomedullary chromaffin vesicles. J Anat. 1993 Oct;183(Pt 2):253–264. [PMC free article] [PubMed] [Google Scholar]
  54. Simon J. P., Bader M. F., Aunis D. Secretion from chromaffin cells is controlled by chromogranin A-derived peptides. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1712–1716. doi: 10.1073/pnas.85.5.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Smith A. D., Winkler H. Purification and properties of an acidic protein from chromaffin granules of bovine adrenal medulla. Biochem J. 1967 May;103(2):483–492. doi: 10.1042/bj1030483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Syversen U., Waldum H. L., O'Connor D. T. Rapid, high-yield isolation of human chromogranin A from chromaffin granules of pheochromocytomas. Neuropeptides. 1992 Aug;22(4):235–240. doi: 10.1016/0143-4179(92)90052-x. [DOI] [PubMed] [Google Scholar]
  57. Tatemoto K., Efendić S., Mutt V., Makk G., Feistner G. J., Barchas J. D. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986 Dec 4;324(6096):476–478. doi: 10.1038/324476a0. [DOI] [PubMed] [Google Scholar]
  58. Taupenot L., Ciesielski-Treska J., Ulrich G., Chasserot-Golaz S., Aunis D., Bader M. F. Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience. 1996 May;72(2):377–389. doi: 10.1016/0306-4522(96)83172-1. [DOI] [PubMed] [Google Scholar]
  59. Winkler H., Apps D. K., Fischer-Colbrie R. The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience. 1986 Jun;18(2):261–290. doi: 10.1016/0306-4522(86)90154-5. [DOI] [PubMed] [Google Scholar]
  60. Winkler H., Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992 Aug;49(3):497–528. doi: 10.1016/0306-4522(92)90222-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wu H. J., Rozansky D. J., Parmer R. J., Gill B. M., O'Connor D. T. Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J Biol Chem. 1991 Jul 15;266(20):13130–13134. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES