Abstract
Infections due to Cryptococcus neoformans are common in AIDS patients. We investigated the effect of chloroquine, which raises the pH of phagolysosomes, on the anticryptococcal activity of mononuclear phagocytes. C. neoformans multiplied within monocyte-derived macrophages (MDM) in the absence of chloroquine but were killed with the addition of chloroquine. Ammonium chloride was also beneficial, suggesting that effects were mediated by alkalinizing the phagolysosome. Chloroquine inhibits growth of other intracellular pathogens by limiting iron availability. However, chloroquine-induced augmentation of MDM anticryptococcal activity was unaffected by iron nitriloacetate, demonstrating that chloroquine worked by a mechanism independent of iron deprivation. There was an inverse correlation between growth of C. neoformans in cell-free media and pH, suggesting that some of the effect of chloroquine on the anticryptococcal activity of MDM could be explained by relatively poor growth at higher pH. Chloroquine enhanced MDM anticryptococcal activity against all tested cryptococcal strains except for one large-capsule strain which was not phagocytosed. Positive effects of chloroquine were also seen in monocytes from both HIV-infected and -uninfected donors. Finally, chloroquine was therapeutic in experimental cryptococcosis in outbred and severe combined immunodeficient mice. Thus, chloroquine enhances the activity of mononuclear phagocytes against C. neoformans by iron-independent, pH-dependent mechanisms and is therapeutic in murine models of cryptococcosis. Chloroquine might have clinical utility for the prophylaxis and treatment of human cryptococcosis.
Full Text
The Full Text of this article is available as a PDF (215.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER R. D., HAUGEN R. K. Tissue changes and tissue diagnosis in cryptococcosis; a study of 26 cases. Am J Clin Pathol. 1955 Jan;25(1):14–24. doi: 10.1093/ajcp/25.1.14. [DOI] [PubMed] [Google Scholar]
- Bates G. W., Wernicke J. The kinetics and mechanism of iron(3) exchange between chelates and transferrin. IV. The reaction of transferrin with iron(3) nitrilotriacetate. J Biol Chem. 1971 Jun 10;246(11):3679–3685. [PubMed] [Google Scholar]
- Byrd T. F., Horwitz M. A. Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin Invest. 1991 Jul;88(1):351–357. doi: 10.1172/JCI115301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell E. J., Cury J. D., Shapiro S. D., Goldberg G. I., Welgus H. G. Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and tissue inhibitor of metalloproteinases. J Immunol. 1991 Feb 15;146(4):1286–1293. [PubMed] [Google Scholar]
- Clemons K. V., Azzi R., Stevens D. A. Experimental systemic cryptococcosis in SCID mice. J Med Vet Mycol. 1996 Sep-Oct;34(5):331–335. doi: 10.1080/02681219680000561. [DOI] [PubMed] [Google Scholar]
- Collins H. L., Bancroft G. J. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect Immun. 1991 Nov;59(11):3883–3888. doi: 10.1128/iai.59.11.3883-3888.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowle A. J., May M. H. Inhibition of tubercle bacilli in cultured human macrophages by chloroquine used alone and in combination with streptomycin, isoniazid, pyrazinamide, and two metabolites of vitamin D3. Antimicrob Agents Chemother. 1990 Nov;34(11):2217–2222. doi: 10.1128/aac.34.11.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dautry-Varsat A., Ciechanover A., Lodish H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond R. D., Bennett J. E. Growth of Cryptococcus neoformans within human macrophages in vitro. Infect Immun. 1973 Feb;7(2):231–236. doi: 10.1128/iai.7.2.231-236.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eissenberg L. G., Goldman W. E., Schlesinger P. H. Histoplasma capsulatum modulates the acidification of phagolysosomes. J Exp Med. 1993 Jun 1;177(6):1605–1611. doi: 10.1084/jem.177.6.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ertel W., Morrison M. H., Ayala A., Chaudry I. H. Chloroquine attenuates hemorrhagic shock-induced immunosuppression and decreases susceptibility to sepsis. Arch Surg. 1992 Jan;127(1):70–76. doi: 10.1001/archsurg.1992.01420010084012. [DOI] [PubMed] [Google Scholar]
- Fortier A. H., Leiby D. A., Narayanan R. B., Asafoadjei E., Crawford R. M., Nacy C. A., Meltzer M. S. Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun. 1995 Apr;63(4):1478–1483. doi: 10.1128/iai.63.4.1478-1483.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- French J. K., Hurst N. P., O'Donnell M. L., Betts W. H. Uptake of chloroquine and hydroxychloroquine by human blood leucocytes in vitro: relation to cellular concentrations during antirheumatic therapy. Ann Rheum Dis. 1987 Jan;46(1):42–45. doi: 10.1136/ard.46.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOWARD D. H. Some factors which affect the initiation of growth of Cryptococcus neoformans. J Bacteriol. 1961 Sep;82:430–435. doi: 10.1128/jb.82.3.430-435.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison T. S., Kornfeld H., Levitz S. M. The effect of infection with human immunodeficiency virus on the anticryptococcal activity of lymphocytes and monocytes. J Infect Dis. 1995 Sep;172(3):665–671. doi: 10.1093/infdis/172.3.665. [DOI] [PubMed] [Google Scholar]
- Harrison T. S., Levitz S. M. Role of IL-12 in peripheral blood mononuclear cell responses to fungi in persons with and without HIV infection. J Immunol. 1996 Jun 1;156(11):4492–4497. [PubMed] [Google Scholar]
- Hart P. D., Young M. R. Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast. J Exp Med. 1991 Oct 1;174(4):881–889. doi: 10.1084/jem.174.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Petro M. J. Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol. 1987 Dec;25(6):415–418. [PubMed] [Google Scholar]
- Johnson W., Varner L., Poch M. Acquisition of iron by Legionella pneumophila: role of iron reductase. Infect Immun. 1991 Jul;59(7):2376–2381. doi: 10.1128/iai.59.7.2376-2381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozel T. R., Pfrommer G. S., Guerlain A. S., Highison B. A., Highison G. J. Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect Immun. 1988 Nov;56(11):2794–2800. doi: 10.1128/iai.56.11.2794-2800.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krogstad D. J., Schlesinger P. H. Acid-vesicle function, intracellular pathogens, and the action of chloroquine against Plasmodium falciparum. N Engl J Med. 1987 Aug 27;317(9):542–549. doi: 10.1056/NEJM198708273170905. [DOI] [PubMed] [Google Scholar]
- Levitz S. M. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony-stimulating factor to inhibit Cryptococcus neoformans. Infect Immun. 1991 Oct;59(10):3393–3397. doi: 10.1128/iai.59.10.3393-3397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M., Farrell T. P. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun. 1990 May;58(5):1201–1209. doi: 10.1128/iai.58.5.1201-1209.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M. Macrophage-Cryptococcus interactions. Immunol Ser. 1994;60:533–543. [PubMed] [Google Scholar]
- Levitz S. M., North E. A., Jiang Y., Nong S. H., Kornfeld H., Harrison T. S. Variables affecting production of monocyte chemotactic factor 1 from human leukocytes stimulated with Cryptococcus neoformans. Infect Immun. 1997 Mar;65(3):903–908. doi: 10.1128/iai.65.3.903-908.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M., Tabuni A. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Invest. 1991 Feb;87(2):528–535. doi: 10.1172/JCI115027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M., Tabuni A., Kornfeld H., Reardon C. C., Golenbock D. T. Production of tumor necrosis factor alpha in human leukocytes stimulated by Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1975–1981. doi: 10.1128/iai.62.5.1975-1981.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M., Tabuni A., Kozel T. R., MacGill R. S., Ingalls R. R., Golenbock D. T. Binding of Cryptococcus neoformans to heterologously expressed human complement receptors. Infect Immun. 1997 Mar;65(3):931–935. doi: 10.1128/iai.65.3.931-935.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitz S. M. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis. 1991 Nov-Dec;13(6):1163–1169. doi: 10.1093/clinids/13.6.1163. [DOI] [PubMed] [Google Scholar]
- Mackenzie A. H. Pharmacologic actions of 4-aminoquinoline compounds. Am J Med. 1983 Jul 18;75(1A):5–10. doi: 10.1016/0002-9343(83)91264-0. [DOI] [PubMed] [Google Scholar]
- Mazzolla R., Barluzzi R., Brozzetti A., Boelaert J. R., Luna T., Saleppico S., Bistoni F., Blasi E. Enhanced resistance to Cryptococcus neoformans infection induced by chloroquine in a murine model of meningoencephalitis. Antimicrob Agents Chemother. 1997 Apr;41(4):802–807. doi: 10.1128/aac.41.4.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller M. F., Mitchell T. G. Killing of Cryptococcus neoformans strains by human neutrophils and monocytes. Infect Immun. 1991 Jan;59(1):24–28. doi: 10.1128/iai.59.1.24-28.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra U. K., Gawdi G., Pizzo S. V. Chloroquine, quinine and quinidine inhibit calcium release from macrophage intracellular stores by blocking inositol 1,4,5-trisphosphate binding to its receptor. J Cell Biochem. 1997 Feb;64(2):225–232. doi: 10.1002/(sici)1097-4644(199702)64:2<225::aid-jcb6>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman S. L., Gootee L., Brunner G., Deepe G. S., Jr Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest. 1994 Apr;93(4):1422–1429. doi: 10.1172/JCI117119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olakanmi O., Stokes J. B., Britigan B. E. Acquisition of iron bound to low molecular weight chelates by human monocyte-derived macrophages. J Immunol. 1994 Sep 15;153(6):2691–2703. [PubMed] [Google Scholar]
- Powderly W. G. Cryptococcal meningitis and AIDS. Clin Infect Dis. 1993 Nov;17(5):837–842. doi: 10.1093/clinids/17.5.837. [DOI] [PubMed] [Google Scholar]
- Sibille J. C., Ciriolo M., Kondo H., Crichton R. R., Aisen P. Subcellular localization of ferritin and iron taken up by rat hepatocytes. Biochem J. 1989 Sep 1;262(2):685–688. doi: 10.1042/bj2620685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sibille J. C., Kondo H., Aisen P. Uptake of ferritin and iron bound to ferritin by rat hepatocytes: modulation by apotransferrin, iron chelators and chloroquine. Biochim Biophys Acta. 1989 Feb 9;1010(2):204–209. doi: 10.1016/0167-4889(89)90162-6. [DOI] [PubMed] [Google Scholar]
- Small J. M., Mitchell T. G., Wheat R. W. Strain variation in composition and molecular size of the capsular polysaccharide of Cryptococcus neoformans serotype A. Infect Immun. 1986 Dec;54(3):735–741. doi: 10.1128/iai.54.3.735-741.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperber K., Kalb T. H., Stecher V. J., Banerjee R., Mayer L. Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes. AIDS Res Hum Retroviruses. 1993 Jan;9(1):91–98. doi: 10.1089/aid.1993.9.91. [DOI] [PubMed] [Google Scholar]
- Sperber K., Louie M., Kraus T., Proner J., Sapira E., Lin S., Stecher V., Mayer L. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther. 1995 Jul-Aug;17(4):622–636. doi: 10.1016/0149-2918(95)80039-5. [DOI] [PubMed] [Google Scholar]
- Starke P. E., Gilbertson J. D., Farber J. L. Lysosomal origin of the ferric iron required for cell killing by hydrogen peroxide. Biochem Biophys Res Commun. 1985 Dec 17;133(2):371–379. doi: 10.1016/0006-291x(85)90916-7. [DOI] [PubMed] [Google Scholar]
- Vartivarian S. E., Cowart R. E., Anaissie E. J., Tashiro T., Sprigg H. A. Iron acquisition by Cryptococcus neoformans. J Med Vet Mycol. 1995 May-Jun;33(3):151–156. [PubMed] [Google Scholar]
- Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zebedee S. L., Koduri R. K., Mukherjee J., Mukherjee S., Lee S., Sauer D. F., Scharff M. D., Casadevall A. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans. Antimicrob Agents Chemother. 1994 Jul;38(7):1507–1514. doi: 10.1128/aac.38.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu X., Ertel W., Ayala A., Morrison M. H., Perrin M. M., Chaudry I. H. Chloroquine inhibits macrophage tumour necrosis factor-alpha mRNA transcription. Immunology. 1993 Sep;80(1):122–126. [PMC free article] [PubMed] [Google Scholar]