Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1647–1653. doi: 10.1172/JCI119689

RGDN peptide interaction with endothelial alpha5beta1 integrin causes sustained endothelin-dependent vasoconstriction of rat skeletal muscle arterioles.

J E Mogford 1, G E Davis 1, G A Meininger 1
PMCID: PMC508347  PMID: 9294134

Abstract

The ability of an integrin-binding Arg-Gly-Asp-Asn (RGDN)- containing peptide to influence vascular tone by interacting with the alpha5beta1 integrin was studied using rat skeletal muscle arterioles. After blockade of beta3 integrin function, isolated arterioles with spontaneous tone showed concentration-dependent vasoconstrictions to topical application of GRGDNP, a peptide that shows a greater ability to interact with alpha5beta1 than with alphavbeta3. The constriction to GRGDNP (2.1 mM) was inhibited by blocking alpha5 integrin function, and was intensified by blocking beta3 integrin function. In contrast, GRGDSP, a peptide that interacts better with alphavbeta3, was unable to induce sustained constrictions. Removal of the endothelium abolished the vasoconstriction in response to GRGDNP, suggesting that the response was due to release of an endothelium-dependent factor. Indeed, blockade of ETA endothelin receptors with BQ-610 (1 microM), similar to removal of the endothelium and alpha5 integrin blockade, inhibited the vasoconstriction. These data indicate that interaction of RGD peptides, and in particular the RGDN sequence with endothelial cell alpha5beta1, causes endothelin-mediated arteriolar vasoconstriction. These results indicate that integrins are novel signaling receptors within the vascular wall that affect vasomotor tone, and may play an important role in vascular control.

Full Text

The Full Text of this article is available as a PDF (185.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Aota S., Yamada K. M. Function and receptor specificity of a minimal 20 kilodalton cell adhesive fragment of fibronectin. Cell Adhes Commun. 1995 Feb;3(1):13–25. doi: 10.3109/15419069509081275. [DOI] [PubMed] [Google Scholar]
  2. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
  3. Bernard M. P., Myers J. C., Chu M. L., Ramirez F., Eikenberry E. F., Prockop D. J. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry. 1983 Mar 1;22(5):1139–1145. doi: 10.1021/bi00274a023. [DOI] [PubMed] [Google Scholar]
  4. Beviglia L., Poggi A., Rossi C., McLane M. A., Calabrese R., Scanziani E., Cook J. J., Niewiarowski S. Mouse antithrombotic assay. Inhibition of platelet thromboembolism by disintegrins. Thromb Res. 1993 Aug 15;71(4):301–315. doi: 10.1016/0049-3848(93)90199-x. [DOI] [PubMed] [Google Scholar]
  5. Burnstock G., Ralevic V. New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br J Plast Surg. 1994 Dec;47(8):527–543. doi: 10.1016/0007-1226(94)90136-8. [DOI] [PubMed] [Google Scholar]
  6. Chen C. S., Hawiger J. Reactivity of synthetic peptide analogs of adhesive proteins in regard to the interaction of human endothelial cells with extracellular matrix. Blood. 1991 May 15;77(10):2200–2206. [PubMed] [Google Scholar]
  7. Clarke J. G., Benjamin N., Larkin S. W., Webb D. J., Davies G. J., Maseri A. Endothelin is a potent long-lasting vasoconstrictor in men. Am J Physiol. 1989 Dec;257(6 Pt 2):H2033–H2035. doi: 10.1152/ajpheart.1989.257.6.H2033. [DOI] [PubMed] [Google Scholar]
  8. Davenport A. P., O'Reilly G., Kuc R. E. Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type. Br J Pharmacol. 1995 Mar;114(6):1110–1116. doi: 10.1111/j.1476-5381.1995.tb13322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis G. E. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1025–1031. doi: 10.1016/0006-291x(92)91834-d. [DOI] [PubMed] [Google Scholar]
  10. Dedhar S., Hannigan G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol. 1996 Oct;8(5):657–669. doi: 10.1016/s0955-0674(96)80107-4. [DOI] [PubMed] [Google Scholar]
  11. Deng L. Y., Li J. S., Schiffrin E. L. Endothelin receptor subtypes in resistance arteries from humans and rats. Cardiovasc Res. 1995 Apr;29(4):532–535. [PubMed] [Google Scholar]
  12. Falcone J. C., Davis M. J., Meininger G. A. Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am J Physiol. 1991 Jan;260(1 Pt 2):H130–H135. doi: 10.1152/ajpheart.1991.260.1.H130. [DOI] [PubMed] [Google Scholar]
  13. Faull R. J., Kovach N. L., Harlan J. M., Ginsberg M. H. Affinity modulation of integrin alpha 5 beta 1: regulation of the functional response by soluble fibronectin. J Cell Biol. 1993 Apr;121(1):155–162. doi: 10.1083/jcb.121.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gould R. J., Polokoff M. A., Friedman P. A., Huang T. F., Holt J. C., Cook J. J., Niewiarowski S. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 1990 Nov;195(2):168–171. doi: 10.3181/00379727-195-43129b. [DOI] [PubMed] [Google Scholar]
  15. Hayman E. G., Pierschbacher M. D., Ruoslahti E. Detachment of cells from culture substrate by soluble fibronectin peptides. J Cell Biol. 1985 Jun;100(6):1948–1954. doi: 10.1083/jcb.100.6.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol. 1995 May;129(3):867–879. doi: 10.1083/jcb.129.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Humphries M. J. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol. 1996 Oct;8(5):632–640. doi: 10.1016/s0955-0674(96)80104-9. [DOI] [PubMed] [Google Scholar]
  18. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  19. Kano Y., Katoh K., Masuda M., Fujiwara K. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ Res. 1996 Nov;79(5):1000–1006. doi: 10.1161/01.res.79.5.1000. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi H., Hayashi M., Kobayashi S., Kabuto M., Handa Y., Kawano H. Effect of endothelin on the canine basilar artery. Neurosurgery. 1990 Sep;27(3):357–361. doi: 10.1097/00006123-199009000-00003. [DOI] [PubMed] [Google Scholar]
  21. LaFlamme S. E., Akiyama S. K., Yamada K. M. Regulation of fibronectin receptor distribution. J Cell Biol. 1992 Apr;117(2):437–447. doi: 10.1083/jcb.117.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lew M. J., Rivers R. J., Duling B. R. Arteriolar smooth muscle responses are modulated by an intramural diffusion barrier. Am J Physiol. 1989 Jul;257(1 Pt 2):H10–H16. doi: 10.1152/ajpheart.1989.257.1.H10. [DOI] [PubMed] [Google Scholar]
  23. Miyamoto S., Akiyama S. K., Yamada K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995 Feb 10;267(5199):883–885. doi: 10.1126/science.7846531. [DOI] [PubMed] [Google Scholar]
  24. Mogford J. E., Davis G. E., Platts S. H., Meininger G. A. Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ Res. 1996 Oct;79(4):821–826. doi: 10.1161/01.res.79.4.821. [DOI] [PubMed] [Google Scholar]
  25. Nilsson T. K., Domellöf L., Berghem L. Effects of partial hepatectomy on plasma fibronectin concentrations in the rat. Br J Exp Pathol. 1987 Jun;68(3):421–425. [PMC free article] [PubMed] [Google Scholar]
  26. Oldberg A., Franzén A., Heinegård D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8819–8823. doi: 10.1073/pnas.83.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  28. Pierschbacher M. D., Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 1987 Dec 25;262(36):17294–17298. [PubMed] [Google Scholar]
  29. Pierschbacher M. D., Ruoslahti E., Sundelin J., Lind P., Peterson P. A. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem. 1982 Aug 25;257(16):9593–9597. [PubMed] [Google Scholar]
  30. Pytela R., Pierschbacher M. D., Ginsberg M. H., Plow E. F., Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science. 1986 Mar 28;231(4745):1559–1562. doi: 10.1126/science.2420006. [DOI] [PubMed] [Google Scholar]
  31. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  33. Scarborough R. M., Rose J. W., Naughton M. A., Phillips D. R., Nannizzi L., Arfsten A., Campbell A. M., Charo I. F. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem. 1993 Jan 15;268(2):1058–1065. [PubMed] [Google Scholar]
  34. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  35. Smith J. W., Vestal D. J., Irwin S. V., Burke T. A., Cheresh D. A. Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin. J Biol Chem. 1990 Jul 5;265(19):11008–11013. [PubMed] [Google Scholar]
  36. Suzuki S., Oldberg A., Hayman E. G., Pierschbacher M. D., Ruoslahti E. Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J. 1985 Oct;4(10):2519–2524. doi: 10.1002/j.1460-2075.1985.tb03965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tuckwell D. S., Weston S. A., Humphries M. J. Integrins: a review of their structure and mechanisms of ligand binding. Symp Soc Exp Biol. 1993;47:107–136. [PubMed] [Google Scholar]
  38. Varner J. A., Emerson D. A., Juliano R. L. Integrin alpha 5 beta 1 expression negatively regulates cell growth: reversal by attachment to fibronectin. Mol Biol Cell. 1995 Jun;6(6):725–740. doi: 10.1091/mbc.6.6.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vogel B. E., Tarone G., Giancotti F. G., Gailit J., Ruoslahti E. A novel fibronectin receptor with an unexpected subunit composition (alpha v beta 1). J Biol Chem. 1990 Apr 15;265(11):5934–5937. [PubMed] [Google Scholar]
  40. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  41. Yonezawa I., Kato K., Yagita H., Yamauchi Y., Okumura K. VLA-5-mediated interaction with fibronectin induces cytokine production by human chondrocytes. Biochem Biophys Res Commun. 1996 Feb 6;219(1):261–265. doi: 10.1006/bbrc.1996.0215. [DOI] [PubMed] [Google Scholar]
  42. Zanetti A., Conforti G., Hess S., Martìn-Padura I., Ghibaudi E., Preissner K. T., Dejana E. Clustering of vitronectin and RGD peptides on microspheres leads to engagement of integrins on the luminal aspect of endothelial cell membrane. Blood. 1994 Aug 15;84(4):1116–1123. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES