Abstract
All affected patients in four families with autosomal dominant familial renal tubular acidosis (dRTA) were heterozygous for mutations in their red cell HCO3-/Cl- exchanger, band 3 (AE1, SLC4A1) genes, and these mutations were not found in any of the nine normal family members studied. The mutation Arg589--> His was present in two families, while Arg589--> Cys and Ser613--> Phe changes were found in the other families. Linkage studies confirmed the co-segregation of the disease with a genetic marker close to AE1. The affected individuals with the Arg589 mutations had reduced red cell sulfate transport and altered glycosylation of the red cell band 3 N-glycan chain. The red cells of individuals with the Ser613--> Phe mutation had markedly increased red cell sulfate transport but almost normal red cell iodide transport. The erythroid and kidney isoforms of the mutant band 3 proteins were expressed in Xenopus oocytes and all showed significant chloride transport activity. We conclude that dominantly inherited dRTA is associated with mutations in band 3; but both the disease and its autosomal dominant inheritance are not related simply to the anion transport activity of the mutant proteins.
Full Text
The Full Text of this article is available as a PDF (420.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agroyannis B., Koutsikos D., Tzanatos-Exarchou H., Yatzidis H. Erythrocytosis in type I renal tubular acidosis with nephrocalcinosis. Nephrol Dial Transplant. 1992;7(4):365–366. doi: 10.1093/oxfordjournals.ndt.a092145. [DOI] [PubMed] [Google Scholar]
- Al-Awqati Q. Plasticity in epithelial polarity of renal intercalated cells: targeting of the H(+)-ATPase and band 3. Am J Physiol. 1996 Jun;270(6 Pt 1):C1571–C1580. doi: 10.1152/ajpcell.1996.270.6.C1571. [DOI] [PubMed] [Google Scholar]
- Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alper S. L. The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol. 1991;53:549–564. doi: 10.1146/annurev.ph.53.030191.003001. [DOI] [PubMed] [Google Scholar]
- Baehner R. L., Gilchrist G. S., Anderson E. J. Hereditary elliptocytosis and primary renal tubular acidosis in a single family. Am J Dis Child. 1968 Apr;115(4):414–419. doi: 10.1001/archpedi.1968.02100010416002. [DOI] [PubMed] [Google Scholar]
- Bartel D., Lepke S., Layh-Schmitt G., Legrum B., Passow H. Anion transport in oocytes of Xenopus laevis induced by expression of mouse erythroid band 3 protein--encoding cRNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate binding site. EMBO J. 1989 Dec 1;8(12):3601–3609. doi: 10.1002/j.1460-2075.1989.tb08533.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastani B., Haragsim L., Gluck S., Siamopoulos K. C. Lack of H-ATPase in distal nephron causing hypokalaemic distal RTA in a patient with Sjögren's syndrome. Nephrol Dial Transplant. 1995;10(6):908–909. [PubMed] [Google Scholar]
- Brock C. J., Tanner M. J., Kempf C. The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem J. 1983 Sep 1;213(3):577–586. doi: 10.1042/bj2130577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brosius F. C., 3rd, Alper S. L., Garcia A. M., Lodish H. F. The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem. 1989 May 15;264(14):7784–7787. [PubMed] [Google Scholar]
- Bruce L. J., Tanner M. J. Structure-function relationships of band 3 variants. Cell Mol Biol (Noisy-le-grand) 1996 Nov;42(7):953–973. [PubMed] [Google Scholar]
- Cohen E. P., Bastani B., Cohen M. R., Kolner S., Hemken P., Gluck S. L. Absence of H(+)-ATPase in cortical collecting tubules of a patient with Sjogren's syndrome and distal renal tubular acidosis. J Am Soc Nephrol. 1992 Aug;3(2):264–271. doi: 10.1681/ASN.V32264. [DOI] [PubMed] [Google Scholar]
- Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
- Fain P. R. Third International Workshop on Human Chromosome 17 Mapping. Cytogenet Cell Genet. 1992;60(3-4):178–186. [PubMed] [Google Scholar]
- Feest T. G., Proctor S., Brown R., Wrong O. M. Nephrocalcinosis: another cause of renal erythrocytosis. Br Med J. 1978 Aug 26;2(6137):605–605. doi: 10.1136/bmj.2.6137.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiévet B., Gabillat N., Borgese F., Motais R. Expression of band 3 anion exchanger induces chloride current and taurine transport: structure-function analysis. EMBO J. 1995 Nov 1;14(21):5158–5169. doi: 10.1002/j.1460-2075.1995.tb00200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda M., Dell A., Oates J. E., Fukuda M. N. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J Biol Chem. 1984 Jul 10;259(13):8260–8273. [PubMed] [Google Scholar]
- Gahmberg C. G., Myllyla G., Leikola J., Pirkola A., Nordling S. Absence of the major sialoglycoprotein in the membrane of human En(a--) erythrocytes and increased glycosylation of band 3. J Biol Chem. 1976 Oct 10;251(19):6108–6116. [PubMed] [Google Scholar]
- Garcia A. M., Lodish H. F. Lysine 539 of human band 3 is not essential for ion transport or inhibition by stilbene disulfonates. J Biol Chem. 1989 Nov 25;264(33):19607–19613. [PubMed] [Google Scholar]
- Groves J. D., Tanner M. J. Glycophorin A facilitates the expression of human band 3-mediated anion transport in Xenopus oocytes. J Biol Chem. 1992 Nov 5;267(31):22163–22170. [PubMed] [Google Scholar]
- Groves J. D., Tanner M. J. The effects of glycophorin A on the expression of the human red cell anion transporter (band 3) in Xenopus oocytes. J Membr Biol. 1994 May;140(1):81–88. doi: 10.1007/BF00234488. [DOI] [PubMed] [Google Scholar]
- Inaba M., Yawata A., Koshino I., Sato K., Takeuchi M., Takakuwa Y., Manno S., Yawata Y., Kanzaki A., Sakai J. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation. J Clin Invest. 1996 Apr 15;97(8):1804–1817. doi: 10.1172/JCI118610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarolim P., Rubin H. L., Brabec V., Chrobak L., Zolotarev A. S., Alper S. L., Brugnara C., Wichterle H., Palek J. Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood. 1995 Feb 1;85(3):634–640. [PubMed] [Google Scholar]
- Kempf C., Brock C., Sigrist H., Tanner M. J., Zahler P. Interaction of phenylisothiocyanate with human erythrocyte band 3 protein. II. Topology of phenylisothiocyanate binding sites and influence of p-sulfophenylisothiocyanate on phenylisothiocyanate modification. Biochim Biophys Acta. 1981 Feb 20;641(1):88–98. doi: 10.1016/0005-2736(81)90571-x. [DOI] [PubMed] [Google Scholar]
- Kollert-Jöns A., Wagner S., Hübner S., Appelhans H., Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol. 1993 Dec;265(6 Pt 2):F813–F821. doi: 10.1152/ajprenal.1993.265.6.F813. [DOI] [PubMed] [Google Scholar]
- Kopito R. R. Molecular biology of the anion exchanger gene family. Int Rev Cytol. 1990;123:177–199. doi: 10.1016/s0074-7696(08)60674-9. [DOI] [PubMed] [Google Scholar]
- Kudo S., Fukuda M. Structural organization of glycophorin A and B genes: glycophorin B gene evolved by homologous recombination at Alu repeat sequences. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4619–4623. doi: 10.1073/pnas.86.12.4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudrycki K. E., Shull G. E. Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J Biol Chem. 1989 May 15;264(14):8185–8192. [PubMed] [Google Scholar]
- Kurtzman N. A. Disorders of distal acidification. Kidney Int. 1990 Oct;38(4):720–727. doi: 10.1038/ki.1990.264. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu S. C., Jarolim P., Rubin H. L., Palek J., Amato D., Hassan K., Zaik M., Sapak P. The homozygous state for the band 3 protein mutation in Southeast Asian Ovalocytosis may be lethal. Blood. 1994 Nov 15;84(10):3590–3591. [PubMed] [Google Scholar]
- Luchi R. J., Gruber J. W. Unusually large digitalis requirements. A study of altered digoxin metabolism. Am J Med. 1968 Aug;45(2):322–328. doi: 10.1016/0002-9343(68)90049-1. [DOI] [PubMed] [Google Scholar]
- Moriyama R., Ideguchi H., Lombardo C. R., Van Dort H. M., Low P. S. Structural and functional characterization of band 3 from Southeast Asian ovalocytes. J Biol Chem. 1992 Dec 25;267(36):25792–25797. [PubMed] [Google Scholar]
- Mueller T. J., Morrison M. Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte. J Biol Chem. 1977 Oct 10;252(19):6573–6576. [PubMed] [Google Scholar]
- Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padgett K. A., Sorge J. A. Creating seamless junctions independent of restriction sites in PCR cloning. Gene. 1996 Feb 2;168(1):31–35. doi: 10.1016/0378-1119(95)00731-8. [DOI] [PubMed] [Google Scholar]
- Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
- Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell. 1996 Sep 20;86(6):917–927. doi: 10.1016/s0092-8674(00)80167-1. [DOI] [PubMed] [Google Scholar]
- Richards P., Wrong O. M. Dominant inheritance in a family with familial renal tubular acidosis. Lancet. 1972 Nov 11;2(7785):998–999. doi: 10.1016/s0140-6736(72)92406-3. [DOI] [PubMed] [Google Scholar]
- Schofield A. E., Martin P. G., Spillett D., Tanner M. J. The structure of the human red blood cell anion exchanger (EPB3, AE1, band 3) gene. Blood. 1994 Sep 15;84(6):2000–2012. [PubMed] [Google Scholar]
- Schofield A. E., Reardon D. M., Tanner M. J. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature. 1992 Feb 27;355(6363):836–838. doi: 10.1038/355836a0. [DOI] [PubMed] [Google Scholar]
- Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
- Schuster V. L., Fejes-Tóth G., Naray-Fejes-Tóth A., Gluck S. Colocalization of H(+)-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Physiol. 1991 Apr;260(4 Pt 2):F506–F517. doi: 10.1152/ajprenal.1991.260.4.F506. [DOI] [PubMed] [Google Scholar]
- Spring F. A., Bruce L. J., Anstee D. J., Tanner M. J. A red cell band 3 variant with altered stilbene disulphonate binding is associated with the Diego (Dia) blood group antigen. Biochem J. 1992 Dec 15;288(Pt 3):713–716. doi: 10.1042/bj2880713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J., Jenkins R. E., Anstee D. J., Clamp J. R. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a-) human erythrocytes. Biochem J. 1976 Jun 1;155(3):701–703. doi: 10.1042/bj1550701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993 Jan;30(1):34–57. [PubMed] [Google Scholar]
- Tanner M. J. Physiology: The acid test for band 3. Nature. 1996 Jul 18;382(6588):209–210. doi: 10.1038/382209a0. [DOI] [PubMed] [Google Scholar]
- Unravelling of the molecular mechanisms of kidney stones. Report of a Meeting of Physicians and Scientists. Lancet. 1996 Dec 7;348(9041):1561–1565. [PubMed] [Google Scholar]
- WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]
- Wainwright S. D., Tanner M. J., Martin G. E., Yendle J. E., Holmes C. Monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein. Localization of the C-terminus of the protein to the cytoplasmic side of the red cell membrane and distribution of the protein in some human tissues. Biochem J. 1989 Feb 15;258(1):211–220. doi: 10.1042/bj2580211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. C., Lee N., Aoki D., Fukuda M. N., Fukuda M. The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J Biol Chem. 1991 Dec 5;266(34):23185–23190. [PubMed] [Google Scholar]
- Wrong O. M., Feest T. G., MacIver A. G. Immune-related potassium-losing interstitial nephritis: a comparison with distal renal tubular acidosis. Q J Med. 1993 Aug;86(8):513–534. doi: 10.1093/qjmed/86.8.513. [DOI] [PubMed] [Google Scholar]