Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 1;100(7):1750–1754. doi: 10.1172/JCI119700

Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1beta cytotoxicity.

M Shimabukuro 1, K Koyama 1, Y Lee 1, R H Unger 1
PMCID: PMC508358  PMID: 9312173

Abstract

Interleukin 1beta (IL-1beta)-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of insulin-dependent diabetes mellitus. These cytotoxic effects may be mediated by nitric oxide (NO). Since long-chain fatty acids (FFA), like IL-1beta, upregulate inducible nitric oxide synthase and enhance NO generation in islets, it seemed possible that islets might be protected from IL-1beta-induced damage by lowering their lipid content. We found that IL-1beta-induced NO production varied directly and islet cell viability inversely with islet triglyceride (TG) content. Fat-laden islets of obese rats were most vulnerable to IL-1beta, while moderately fat-depleted islets of food-restricted normal rats were less vulnerable than those of free-feeding normal rats. Severely lipopenic islets of rats made chronically hyperleptinemic by adenoviral leptin gene transfer resisted IL-1beta cytotoxicity even at 300 pg/ml, the maximal concentration. Troglitazone lowered islet TG in cultured islets from both normal rats and obese, leptin-resistant rats and reduced NO production and enhanced cell survival. We conclude that measures that lower islet TG content protect against IL-1beta-induced NO production and cytotoxicity. Leptin or troglitazone could provide in vivo protection against insulin-dependent diabetes mellitus.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendtzen K., Mandrup-Poulsen T., Nerup J., Nielsen J. H., Dinarello C. A., Svenson M. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science. 1986 Jun 20;232(4757):1545–1547. doi: 10.1126/science.3086977. [DOI] [PubMed] [Google Scholar]
  2. Chen G., Koyama K., Yuan X., Lee Y., Zhou Y. T., O'Doherty R., Newgard C. B., Unger R. H. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14795–14799. doi: 10.1073/pnas.93.25.14795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corbett J. A., McDaniel M. L. Does nitric oxide mediate autoimmune destruction of beta-cells? Possible therapeutic interventions in IDDM. Diabetes. 1992 Aug;41(8):897–903. doi: 10.2337/diab.41.8.897. [DOI] [PubMed] [Google Scholar]
  4. Corbett J. A., Mikhael A., Shimizu J., Frederick K., Misko T. P., McDaniel M. L., Kanagawa O., Unanue E. R. Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8992–8995. doi: 10.1073/pnas.90.19.8992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eizirik D. L., Delaney C. A., Green M. H., Cunningham J. M., Thorpe J. R., Pipeleers D. G., Hellerström C., Green I. C. Nitric oxide donors decrease the function and survival of human pancreatic islets. Mol Cell Endocrinol. 1996 Apr 19;118(1-2):71–83. doi: 10.1016/0303-7207(96)03768-9. [DOI] [PubMed] [Google Scholar]
  6. Fujiwara T., Yoshioka S., Yoshioka T., Ushiyama I., Horikoshi H. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes. 1988 Nov;37(11):1549–1558. doi: 10.2337/diab.37.11.1549. [DOI] [PubMed] [Google Scholar]
  7. Fulgencio J. P., Kohl C., Girard J., Pégorier J. P. Troglitazone inhibits fatty acid oxidation and esterification, and gluconeogenesis in isolated hepatocytes from starved rats. Diabetes. 1996 Nov;45(11):1556–1562. doi: 10.2337/diab.45.11.1556. [DOI] [PubMed] [Google Scholar]
  8. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  9. Iida M., Murakami T., Ishida K., Mizuno A., Kuwajima M., Shima K. Substitution at codon 269 (glutamine --> proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun. 1996 Jul 16;224(2):597–604. doi: 10.1006/bbrc.1996.1070. [DOI] [PubMed] [Google Scholar]
  10. Kleemann R., Rothe H., Kolb-Bachofen V., Xie Q. W., Nathan C., Martin S., Kolb H. Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett. 1993 Aug 9;328(1-2):9–12. doi: 10.1016/0014-5793(93)80954-s. [DOI] [PubMed] [Google Scholar]
  11. Kröncke K. D., Kolb-Bachofen V., Berschick B., Burkart V., Kolb H. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun. 1991 Mar 29;175(3):752–758. doi: 10.1016/0006-291x(91)91630-u. [DOI] [PubMed] [Google Scholar]
  12. Lee Y., Hirose H., Ohneda M., Johnson J. H., McGarry J. D., Unger R. H. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10878–10882. doi: 10.1073/pnas.91.23.10878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee Y., Hirose H., Zhou Y. T., Esser V., McGarry J. D., Unger R. H. Increased lipogenic capacity of the islets of obese rats: a role in the pathogenesis of NIDDM. Diabetes. 1997 Mar;46(3):408–413. doi: 10.2337/diab.46.3.408. [DOI] [PubMed] [Google Scholar]
  14. Lindsay R. M., Smith W., Rossiter S. P., McIntyre M. A., Williams B. C., Baird J. D. N omega-nitro-L-arginine methyl ester reduces the incidence of IDDM in BB/E rats. Diabetes. 1995 Mar;44(3):365–368. doi: 10.2337/diab.44.3.365. [DOI] [PubMed] [Google Scholar]
  15. Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia. 1996 Sep;39(9):1005–1029. doi: 10.1007/BF00400649. [DOI] [PubMed] [Google Scholar]
  16. Marshall N. J., Goodwin C. J., Holt S. J. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul. 1995 Jun;5(2):69–84. [PubMed] [Google Scholar]
  17. McDaniel M. L., Kwon G., Hill J. R., Marshall C. A., Corbett J. A. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med. 1996 Jan;211(1):24–32. doi: 10.3181/00379727-211-43950d. [DOI] [PubMed] [Google Scholar]
  18. Naber S. P., McDonald J. M., Jarett L., McDaniel M. L., Ludvigsen C. W., Lacy P. E. Preliminary characterization of calcium binding in islet-cell plasma membranes. Diabetologia. 1980 Nov;19(5):439–444. doi: 10.1007/BF00281823. [DOI] [PubMed] [Google Scholar]
  19. Ohneda M., Inman L. R., Unger R. H. Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia. 1995 Feb;38(2):173–179. doi: 10.1007/BF00400091. [DOI] [PubMed] [Google Scholar]
  20. Phillips M. S., Liu Q., Hammond H. A., Dugan V., Hey P. J., Caskey C. J., Hess J. F. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996 May;13(1):18–19. doi: 10.1038/ng0596-18. [DOI] [PubMed] [Google Scholar]
  21. Shimabukuro M., Koyama K., Chen G., Wang M. Y., Trieu F., Lee Y., Newgard C. B., Unger R. H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4637–4641. doi: 10.1073/pnas.94.9.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimabukuro M., Ohneda M., Lee Y., Unger R. H. Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest. 1997 Jul 15;100(2):290–295. doi: 10.1172/JCI119534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang S. Q., Lin H. Z., Lane M. D., Clemens M., Diehl A. M. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2557–2562. doi: 10.1073/pnas.94.6.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES