Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 1;100(7):1847–1852. doi: 10.1172/JCI119713

Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease.

L De Franceschi 1, D Bachir 1, F Galacteros 1, G Tchernia 1, T Cynober 1, S Alper 1, O Platt 1, Y Beuzard 1, C Brugnara 1
PMCID: PMC508371  PMID: 9312186

Abstract

Intracellular polymerization and sickling depend markedly on the cellular concentration of sickle hemoglobin (Hb S). A possible therapeutic strategy for sickle cell disease is based on reducing the cellular concentration of Hb S through prevention of erythrocyte dehydration. The K-Cl cotransporter is a major determinant of sickle cell dehydration and is inhibited by increasing erythrocyte Mg content. We studied 10 patients with sickle cell disease before treatment and after 2 and 4 wk of treatment with oral Mg supplements (0.6 meq/kg/d Mg pidolate). Hematological parameters, erythrocyte Na, K, and Mg content, erythrocyte density, membrane transport of Na and K, and osmotic gradient ektacytometry were measured. We found significant increases in sickle erythrocyte Mg and K content and reduction in the number of dense sickle erythrocytes. Erythrocyte K-Cl cotransport was reduced significantly. We also observed a significant reduction in the absolute reticulocyte count and in the number of immature reticulocytes. Ektacytometric analysis showed changes indicative of improved hydration of the erythrocytes. There were no laboratory or clinical signs of hypermagnesemia. Mild, transient diarrhea was the only reported side effect. We conclude that oral Mg supplementation reduces the number of dense erythrocytes and improves the erythrocyte membrane transport abnormalities of patients with sickle cell disease.

Full Text

The Full Text of this article is available as a PDF (221.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANSTALL H. B., HAYWARD G. H., HUNTSMAN R. G., WEITZMAN D., LEHMANN H. The effect of magnesium on blood coagulation in human subjects. Lancet. 1959 Apr 18;1(7077):814–815. doi: 10.1016/s0140-6736(59)92002-1. [DOI] [PubMed] [Google Scholar]
  2. Alvarez J., Montero M., Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem. 1992 Jun 15;267(17):11789–11793. [PubMed] [Google Scholar]
  3. BERNSTEIN R. E. Alterations in metabolic energetics and cation transport during aging of red cells. J Clin Invest. 1959 Sep;38:1572–1586. doi: 10.1172/JCI103936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertles J. F., Milner P. F. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest. 1968 Aug;47(8):1731–1741. doi: 10.1172/JCI105863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borella P., Ambrosini G., Concari M., Bargellini A. Is magnesium content in erythrocytes suitable for evaluating cation retention after oral physiological supplementation in marginally magnesium-deficient subjects? Magnes Res. 1993 Jun;6(2):149–153. [PubMed] [Google Scholar]
  6. Bridges K. R., Barabino G. D., Brugnara C., Cho M. R., Christoph G. W., Dover G., Ewenstein B. M., Golan D. E., Guttmann C. R., Hofrichter J. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood. 1996 Dec 15;88(12):4701–4710. [PubMed] [Google Scholar]
  7. Britton J., Pavord I., Richards K., Wisniewski A., Knox A., Lewis S., Tattersfield A., Weiss S. Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population sample. Lancet. 1994 Aug 6;344(8919):357–362. doi: 10.1016/s0140-6736(94)91399-4. [DOI] [PubMed] [Google Scholar]
  8. Brugnara C., Bunn H. F., Tosteson D. C. Regulation of erythrocyte cation and water content in sickle cell anemia. Science. 1986 Apr 18;232(4748):388–390. doi: 10.1126/science.3961486. [DOI] [PubMed] [Google Scholar]
  9. Brugnara C., Gee B., Armsby C. C., Kurth S., Sakamoto M., Rifai N., Alper S. L., Platt O. S. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest. 1996 Mar 1;97(5):1227–1234. doi: 10.1172/JCI118537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brugnara C., Hipp M. J., Irving P. J., Lathrop H., Lee P. A., Minchello E. M., Winkelman J. Automated reticulocyte counting and measurement of reticulocyte cellular indices. Evaluation of the Miles H*3 blood analyzer. Am J Clin Pathol. 1994 Nov;102(5):623–632. doi: 10.1093/ajcp/102.5.623. [DOI] [PubMed] [Google Scholar]
  11. Brugnara C., Kopin A. S., Bunn H. F., Tosteson D. C. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest. 1985 May;75(5):1608–1617. doi: 10.1172/JCI111867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
  13. Brugnara C., Tosteson D. C. Inhibition of K transport by divalent cations in sickle erythrocytes. Blood. 1987 Dec;70(6):1810–1815. [PubMed] [Google Scholar]
  14. Brugnara C., de Franceschi L., Alper S. L. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest. 1993 Jul;92(1):520–526. doi: 10.1172/JCI116597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Canessa M., Fabry M. E., Nagel R. L. Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation. Blood. 1987 Dec;70(6):1861–1866. [PubMed] [Google Scholar]
  16. Charache S., Terrin M. L., Moore R. D., Dover G. J., Barton F. B., Eckert S. V., McMahon R. P., Bonds D. R. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995 May 18;332(20):1317–1322. doi: 10.1056/NEJM199505183322001. [DOI] [PubMed] [Google Scholar]
  17. Clark M. R., Mohandas N., Shohet S. B. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood. 1983 May;61(5):899–910. [PubMed] [Google Scholar]
  18. Clark M. R., Morrison C. E., Shohet S. B. Monovalent cation transport in irreversibly sickled cells. J Clin Invest. 1978 Aug;62(2):329–337. doi: 10.1172/JCI109133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cynober T., Mohandas N., Tchernia G. Red cell abnormalities in hereditary spherocytosis: relevance to diagnosis and understanding of the variable expression of clinical severity. J Lab Clin Med. 1996 Sep;128(3):259–269. doi: 10.1016/s0022-2143(96)90027-x. [DOI] [PubMed] [Google Scholar]
  20. DANON D., MARIKOVSKY V. DETERMINATION OF DENSITY DISTRIBUTION OF RED CELL POPULATION. J Lab Clin Med. 1964 Oct;64:668–674. [PubMed] [Google Scholar]
  21. De Franceschi L., Beuzard Y., Jouault H., Brugnara C. Modulation of erythrocyte potassium chloride cotransport, potassium content, and density by dietary magnesium intake in transgenic SAD mouse. Blood. 1996 Oct 1;88(7):2738–2744. [PubMed] [Google Scholar]
  22. De Franceschi L., Saadane N., Trudel M., Alper S. L., Brugnara C., Beuzard Y. Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease. J Clin Invest. 1994 Apr;93(4):1670–1676. doi: 10.1172/JCI117149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Eaton W. A., Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood. 1987 Nov;70(5):1245–1266. [PubMed] [Google Scholar]
  24. Flatman P. W., Lew V. L. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells. J Physiol. 1981 Jun;315:421–446. doi: 10.1113/jphysiol.1981.sp013756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Franco R. S., Palascak M., Thompson H., Joiner C. H. KCl cotransport activity in light versus dense transferrin receptor-positive sickle reticulocytes. J Clin Invest. 1995 Jun;95(6):2573–2580. doi: 10.1172/JCI117958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Franco R. S., Palascak M., Thompson H., Rucknagel D. L., Joiner C. H. Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium. Blood. 1996 Dec 1;88(11):4359–4365. [PubMed] [Google Scholar]
  27. Féray J. C., Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta. 1986 Mar 27;856(1):76–84. doi: 10.1016/0005-2736(86)90012-x. [DOI] [PubMed] [Google Scholar]
  28. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  29. GINSBURG S., SMITH J. G., GINSBURG F. M., REARDON J. Z., AIKAWA J. K. Magnesium metabolism of human and rabbit erythrocytes. Blood. 1962 Dec;20:722–729. [PubMed] [Google Scholar]
  30. Godfrey K. Statistics in practice. Comparing the means of several groups. N Engl J Med. 1985 Dec 5;313(23):1450–1456. doi: 10.1056/NEJM198512053132305. [DOI] [PubMed] [Google Scholar]
  31. Joiner C. H. Cation transport and volume regulation in sickle red blood cells. Am J Physiol. 1993 Feb;264(2 Pt 1):C251–C270. doi: 10.1152/ajpcell.1993.264.2.C251. [DOI] [PubMed] [Google Scholar]
  32. LEHMANN H. Treatment of sickle-cell anemia. Br Med J. 1963 Apr 27;1(5338):1158–1159. doi: 10.1136/bmj.1.5338.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mohandas N., Johnson A., Wyatt J., Croisille L., Reeves J., Tycko D., Groner W. Automated quantitation of cell density distribution and hyperdense cell fraction in RBC disorders. Blood. 1989 Jul;74(1):442–447. [PubMed] [Google Scholar]
  34. Mohandas N., Kim Y. R., Tycko D. H., Orlik J., Wyatt J., Groner W. Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering. Blood. 1986 Aug;68(2):506–513. [PubMed] [Google Scholar]
  35. Noguchi C. T., Rodgers G. P., Schechter A. N. Intracellular polymerization. Disease severity and therapeutic predictions. Ann N Y Acad Sci. 1989;565:75–82. doi: 10.1111/j.1749-6632.1989.tb24152.x. [DOI] [PubMed] [Google Scholar]
  36. Olukoga A. O., Adewoye H. O., Erasmus R. T., Adedoyin M. A. Erythrocyte and plasma magnesium in sickle-cell anaemia. East Afr Med J. 1990 May;67(5):348–354. [PubMed] [Google Scholar]
  37. Ortiz O. E., Lew V. L., Bookchin R. M. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol. 1990 Aug;427:211–226. doi: 10.1113/jphysiol.1990.sp018168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Paolisso G., Scheen A., Cozzolino D., Di Maro G., Varricchio M., D'Onofrio F., Lefebvre P. J. Changes in glucose turnover parameters and improvement of glucose oxidation after 4-week magnesium administration in elderly noninsulin-dependent (type II) diabetic patients. J Clin Endocrinol Metab. 1994 Jun;78(6):1510–1514. doi: 10.1210/jcem.78.6.8200955. [DOI] [PubMed] [Google Scholar]
  39. Platt O. S., Orkin S. H., Dover G., Beardsley G. P., Miller B., Nathan D. G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984 Aug;74(2):652–656. doi: 10.1172/JCI111464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rodgers G. P., Schechter A. N., Noguchi C. T. Cell heterogeneity in sickle cell disease: quantitation of the erythrocyte density profile. J Lab Clin Med. 1985 Jul;106(1):30–37. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES