Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 1;100(7):1894–1901. doi: 10.1172/JCI119719

Evidence that calcineurin is rate-limiting for primary human lymphocyte activation.

T D Batiuk 1, L Kung 1, P F Halloran 1
PMCID: PMC508377  PMID: 9312192

Abstract

Cyclosporine (CsA) is both a clinical immunosuppressive drug and a probe to dissect intracellular signaling pathways. In vitro, CsA inhibits lymphocyte gene activation by inhibiting the phosphatase activity of calcineurin (CN). In clinical use, CsA treatment inhibits 50-75% of CN activity in circulating leukocytes. We modeled this degree of CN inhibition in primary human leukocytes in vitro in order to study the effect of partial CN inhibition on the downstream signaling events that lead to gene activation. In CsA-treated leukocytes stimulated by calcium ionophore, the degree of reduction in CN activity was accompanied by a similar degree of inhibition of each event tested: dephosphorylation of nuclear factor of activated T cell proteins, nuclear DNA binding, activation of a transfected reporter gene construct, IFN-gamma and IL-2 mRNA accumulation, and IFN-gamma production. Furthermore, the degree of CN inhibition was reflected by a similar degree of reduction in lymphocyte proliferation and IFN-gamma production in the allogeneic mixed lymphocyte cultures. These data support the conclusion that CN activity is rate-limiting for the activation of primary human T lymphocytes. Thus, the reduction of CN activity observed in CsA-treated patients is accompanied by a similar degree of reduction in lymphocyte gene activation, and accounts for the immunosuppression observed.

Full Text

The Full Text of this article is available as a PDF (262.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe E., De Waal Malefyt R., Matsuda I., Arai K., Arai N. An 11-base-pair DNA sequence motif apparently unique to the human interleukin 4 gene confers responsiveness to T-cell activation signals. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2864–2868. doi: 10.1073/pnas.89.7.2864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batiuk T. D., Pazderka F., Enns J., De Castro L., Halloran P. F. Cyclosporine inhibition of leukocyte calcineurin is much less in whole blood than in culture medium. Transplantation. 1996 Jan 15;61(1):158–161. doi: 10.1097/00007890-199601150-00031. [DOI] [PubMed] [Google Scholar]
  3. Batiuk T. D., Pazderka F., Enns J., DeCastro L., Halloran P. F. Cyclosporine inhibition of calcineurin activity in human leukocytes in vivo is rapidly reversible. J Clin Invest. 1995 Sep;96(3):1254–1260. doi: 10.1172/JCI118159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batiuk T. D., Pazderka F., Halloran P. F. Calcineurin activity is only partially inhibited in leukocytes of cyclosporine-treated patients. Transplantation. 1995 May 27;59(10):1400–1404. doi: 10.1097/00007890-199505270-00007. [DOI] [PubMed] [Google Scholar]
  5. Batiuk T. D., Urmson J., Vincent D., Yatscoff R. W., Halloran P. F. Quantitating immunosuppression. Estimating the 50% inhibitory concentration for in vivo cyclosporine in mice. Transplantation. 1996 Jun 15;61(11):1618–1624. doi: 10.1097/00007890-199606150-00012. [DOI] [PubMed] [Google Scholar]
  6. Campbell P. M., Pimm J., Ramassar V., Halloran P. F. Identification of a calcium-inducible, cyclosporine sensitive element in the IFN-gamma promoter that is a potential NFAT binding site. Transplantation. 1996 Mar 27;61(6):933–939. doi: 10.1097/00007890-199603270-00016. [DOI] [PubMed] [Google Scholar]
  7. Chan A. C., Kadlecek T. A., Elder M. E., Filipovich A. H., Kuo W. L., Iwashima M., Parslow T. G., Weiss A. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science. 1994 Jun 10;264(5165):1599–1601. doi: 10.1126/science.8202713. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Clipstone N. A., Crabtree G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992 Jun 25;357(6380):695–697. doi: 10.1038/357695a0. [DOI] [PubMed] [Google Scholar]
  10. Elder M. E., Lin D., Clever J., Chan A. C., Hope T. J., Weiss A., Parslow T. G. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994 Jun 10;264(5165):1596–1599. doi: 10.1126/science.8202712. [DOI] [PubMed] [Google Scholar]
  11. Fathman C. G., Myers B. D. Cyclosporine therapy for autoimmune disease. N Engl J Med. 1992 Jun 18;326(25):1693–1695. doi: 10.1056/NEJM199206183262509. [DOI] [PubMed] [Google Scholar]
  12. Foor F., Parent S. A., Morin N., Dahl A. M., Ramadan N., Chrebet G., Bostian K. A., Nielsen J. B. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature. 1992 Dec 17;360(6405):682–684. doi: 10.1038/360682a0. [DOI] [PubMed] [Google Scholar]
  13. Frantz B., Nordby E. C., Bren G., Steffan N., Paya C. V., Kincaid R. L., Tocci M. J., O'Keefe S. J., O'Neill E. A. Calcineurin acts in synergy with PMA to inactivate I kappa B/MAD3, an inhibitor of NF-kappa B. EMBO J. 1994 Feb 15;13(4):861–870. doi: 10.1002/j.1460-2075.1994.tb06329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fruman D. A., Klee C. B., Bierer B. E., Burakoff S. J. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3686–3690. doi: 10.1073/pnas.89.9.3686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fuleihan R., Ramesh N., Horner A., Ahern D., Belshaw P. J., Alberg D. G., Stamenkovic I., Harmon W., Geha R. S. Cyclosporin A inhibits CD40 ligand expression in T lymphocytes. J Clin Invest. 1994 Mar;93(3):1315–1320. doi: 10.1172/JCI117089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Green J. M., Noel P. J., Sperling A. I., Walunas T. L., Gray G. S., Bluestone J. A., Thompson C. B. Absence of B7-dependent responses in CD28-deficient mice. Immunity. 1994 Sep;1(6):501–508. doi: 10.1016/1074-7613(94)90092-2. [DOI] [PubMed] [Google Scholar]
  17. Harding M. W., Galat A., Uehling D. E., Schreiber S. L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature. 1989 Oct 26;341(6244):758–760. doi: 10.1038/341758a0. [DOI] [PubMed] [Google Scholar]
  18. Henkemeyer M., Rossi D. J., Holmyard D. P., Puri M. C., Mbamalu G., Harpal K., Shih T. S., Jacks T., Pawson T. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature. 1995 Oct 26;377(6551):695–701. doi: 10.1038/377695a0. [DOI] [PubMed] [Google Scholar]
  19. Hsu V. L., Armitage I. M. Solution structure of cyclosporin A and a nonimmunosuppressive analog bound to fully deuterated cyclophilin. Biochemistry. 1992 Dec 29;31(51):12778–12784. doi: 10.1021/bi00166a010. [DOI] [PubMed] [Google Scholar]
  20. Jain J., McCaffrey P. G., Miner Z., Kerppola T. K., Lambert J. N., Verdine G. L., Curran T., Rao A. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature. 1993 Sep 23;365(6444):352–355. doi: 10.1038/365352a0. [DOI] [PubMed] [Google Scholar]
  21. Kahan B. D. Cyclosporine. N Engl J Med. 1989 Dec 21;321(25):1725–1738. doi: 10.1056/NEJM198912213212507. [DOI] [PubMed] [Google Scholar]
  22. Kanno T., Siebenlist U. Activation of nuclear factor-kappaB via T cell receptor requires a Raf kinase and Ca2+ influx. Functional synergy between Raf and calcineurin. J Immunol. 1996 Dec 15;157(12):5277–5283. [PubMed] [Google Scholar]
  23. Kawai K., Shahinian A., Mak T. W., Ohashi P. S. Skin allograft rejection in CD28-deficient mice. Transplantation. 1996 Feb 15;61(3):352–355. doi: 10.1097/00007890-199602150-00003. [DOI] [PubMed] [Google Scholar]
  24. Kay J. E., Benzie C. R., Goodier M. R., Wick C. J., Doe S. E. Inhibition of T-lymphocyte activation by the immunosuppressive drug FK-506. Immunology. 1989 Aug;67(4):473–477. [PMC free article] [PubMed] [Google Scholar]
  25. Kaye R. E., Fruman D. A., Bierer B. E., Albers M. W., Zydowsky L. D., Ho S. I., Jin Y. J., Castells M. C., Schreiber S. L., Walsh C. T. Effects of cyclosporin A and FK506 on Fc epsilon receptor type I-initiated increases in cytokine mRNA in mouse bone marrow-derived progenitor mast cells: resistance to FK506 is associated with a deficiency in FK506-binding protein FKBP12. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8542–8546. doi: 10.1073/pnas.89.18.8542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today. 1995 Aug;16(8):374–379. doi: 10.1016/0167-5699(95)80004-2. [DOI] [PubMed] [Google Scholar]
  27. Koyama H., Cecka J. M. Rejection episodes. Clin Transpl. 1992:391–404. [PubMed] [Google Scholar]
  28. Langman L. J., LeGatt D. F., Halloran P. F., Yatscoff R. W. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients. Transplantation. 1996 Sep 15;62(5):666–672. doi: 10.1097/00007890-199609150-00022. [DOI] [PubMed] [Google Scholar]
  29. Leitges M., Schmedt C., Guinamard R., Davoust J., Schaal S., Stabel S., Tarakhovsky A. Immunodeficiency in protein kinase cbeta-deficient mice. Science. 1996 Aug 9;273(5276):788–791. doi: 10.1126/science.273.5276.788. [DOI] [PubMed] [Google Scholar]
  30. Liu J., Albers M. W., Wandless T. J., Luan S., Alberg D. G., Belshaw P. J., Cohen P., MacKintosh C., Klee C. B., Schreiber S. L. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 1992 Apr 28;31(16):3896–3901. doi: 10.1021/bi00131a002. [DOI] [PubMed] [Google Scholar]
  31. Macchi P., Villa A., Giliani S., Sacco M. G., Frattini A., Porta F., Ugazio A. G., Johnston J. A., Candotti F., O'Shea J. J. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995 Sep 7;377(6544):65–68. doi: 10.1038/377065a0. [DOI] [PubMed] [Google Scholar]
  32. McCaffrey P. G., Luo C., Kerppola T. K., Jain J., Badalian T. M., Ho A. M., Burgeon E., Lane W. S., Lambert J. N., Curran T. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science. 1993 Oct 29;262(5134):750–754. doi: 10.1126/science.8235597. [DOI] [PubMed] [Google Scholar]
  33. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  34. Mosmann T. R., Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996 Mar;17(3):138–146. doi: 10.1016/0167-5699(96)80606-2. [DOI] [PubMed] [Google Scholar]
  35. Nolan G. P. NF-AT-AP-1 and Rel-bZIP: hybrid vigor and binding under the influence. Cell. 1994 Jun 17;77(6):795–798. doi: 10.1016/0092-8674(94)90126-0. [DOI] [PubMed] [Google Scholar]
  36. Northrop J. P., Ho S. N., Chen L., Thomas D. J., Timmerman L. A., Nolan G. P., Admon A., Crabtree G. R. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature. 1994 Jun 9;369(6480):497–502. doi: 10.1038/369497a0. [DOI] [PubMed] [Google Scholar]
  37. O'Keefe S. J., Tamura J., Kincaid R. L., Tocci M. J., O'Neill E. A. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature. 1992 Jun 25;357(6380):692–694. doi: 10.1038/357692a0. [DOI] [PubMed] [Google Scholar]
  38. Pai S. Y., Fruman D. A., Leong T., Neuberg D., Rosano T. G., McGarigle C., Antin J. H., Bierer B. E. Inhibition of calcineurin phosphatase activity in adult bone marrow transplant patients treated with cyclosporine A. Blood. 1994 Dec 1;84(11):3974–3979. [PubMed] [Google Scholar]
  39. Palestine A. G., Roberge F., Charous B. L., Lane H. C., Fauci A. S., Nussenblatt R. B. The effect of cyclosporine on immunization with tetanus and keyhole limpet hemocyanin (KLH) in humans. J Clin Immunol. 1985 Mar;5(2):115–121. doi: 10.1007/BF00915009. [DOI] [PubMed] [Google Scholar]
  40. Pazderka F., Enns J., Batiuk T. D., Halloran P. F. The functional consequences of partial calcineurin inhibition in human peripheral blood mononuclear leucocytes. Transpl Immunol. 1996 Mar;4(1):23–31. doi: 10.1016/s0966-3274(96)80029-3. [DOI] [PubMed] [Google Scholar]
  41. Pflügl G., Kallen J., Schirmer T., Jansonius J. N., Zurini M. G., Walkinshaw M. D. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature. 1993 Jan 7;361(6407):91–94. doi: 10.1038/361091a0. [DOI] [PubMed] [Google Scholar]
  42. Rao A. NFATp, a cyclosporin-sensitive transcription factor implicated in cytokine gene induction. J Leukoc Biol. 1995 Apr;57(4):536–542. doi: 10.1002/jlb.57.4.536. [DOI] [PubMed] [Google Scholar]
  43. Rincón M., Flavell R. A. AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes. EMBO J. 1994 Sep 15;13(18):4370–4381. doi: 10.1002/j.1460-2075.1994.tb06757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Russell S. M., Tayebi N., Nakajima H., Riedy M. C., Roberts J. L., Aman M. J., Migone T. S., Noguchi M., Markert M. L., Buckley R. H. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995 Nov 3;270(5237):797–800. doi: 10.1126/science.270.5237.797. [DOI] [PubMed] [Google Scholar]
  45. Schreiber S. L., Crabtree G. R. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992 Apr;13(4):136–142. doi: 10.1016/0167-5699(92)90111-J. [DOI] [PubMed] [Google Scholar]
  46. Shahinian A., Pfeffer K., Lee K. P., Kündig T. M., Kishihara K., Wakeham A., Kawai K., Ohashi P. S., Thompson C. B., Mak T. W. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 1993 Jul 30;261(5121):609–612. doi: 10.1126/science.7688139. [DOI] [PubMed] [Google Scholar]
  47. Shaw K. T., Ho A. M., Raghavan A., Kim J., Jain J., Park J., Sharma S., Rao A., Hogan P. G. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11205–11209. doi: 10.1073/pnas.92.24.11205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shibasaki F., Price E. R., Milan D., McKeon F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature. 1996 Jul 25;382(6589):370–373. doi: 10.1038/382370a0. [DOI] [PubMed] [Google Scholar]
  49. Su B., Jacinto E., Hibi M., Kallunki T., Karin M., Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994 Jun 3;77(5):727–736. doi: 10.1016/0092-8674(94)90056-6. [DOI] [PubMed] [Google Scholar]
  50. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Thériault Y., Logan T. M., Meadows R., Yu L., Olejniczak E. T., Holzman T. F., Simmer R. L., Fesik S. W. Solution structure of the cyclosporin A/cyclophilin complex by NMR. Nature. 1993 Jan 7;361(6407):88–91. doi: 10.1038/361088a0. [DOI] [PubMed] [Google Scholar]
  52. Ullman K. S., Northrop J. P., Admon A., Crabtree G. R. Jun family members are controlled by a calcium-regulated, cyclosporin A-sensitive signaling pathway in activated T lymphocytes. Genes Dev. 1993 Feb;7(2):188–196. doi: 10.1101/gad.7.2.188. [DOI] [PubMed] [Google Scholar]
  53. Umanoff H., Edelmann W., Pellicer A., Kucherlapati R. The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1709–1713. doi: 10.1073/pnas.92.5.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Voss S. D., Hong R., Sondel P. M. Severe combined immunodeficiency, interleukin-2 (IL-2), and the IL-2 receptor: experiments of nature continue to point the way. Blood. 1994 Feb 1;83(3):626–635. [PubMed] [Google Scholar]
  55. Woodrow M., Clipstone N. A., Cantrell D. p21ras and calcineurin synergize to regulate the nuclear factor of activated T cells. J Exp Med. 1993 Nov 1;178(5):1517–1522. doi: 10.1084/jem.178.5.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhang B. W., Zimmer G., Chen J., Ladd D., Li E., Alt F. W., Wiederrecht G., Cryan J., O'Neill E. A., Seidman C. E. T cell responses in calcineurin A alpha-deficient mice. J Exp Med. 1996 Feb 1;183(2):413–420. doi: 10.1084/jem.183.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES