Abstract
F2-Isoprostanes are prostaglandin (PG) isomers formed in situ in cell membranes by peroxidation of arachidonic acid. 8-epi PGF2alpha and IPF2alpha-I are F2-isoprostanes produced in humans which circulate in plasma and are excreted in urine. Measurement of F2-isoprostanes may offer a sensitive, specific, and noninvasive method for measuring oxidant stress in clinical settings where reactive oxygen species are putatively involved. We determined whether isoprostanes were present in human atherosclerotic lesions, where lipid peroxidation is thought to occur in vivo. 8-epi PGF2alpha ranged from 1.310-3.450 pmol/micromol phospholipid in atherectomy specimens compared with 0.045-0.115 pmol/micromol phospholipid (P < 0.001) in vascular tissue devoid of atherosclerosis. Corresponding values of IPF2alpha-I were 5.6-13.8 vs. 0.16-0.44 pmol/micromol phospholipid (P < 0.001). Levels of the two isoprostanes in vascular tissue were highly correlated (r = 0.80, P < 0.0001). Immunohistochemical studies confirmed that foam cells adjacent to the lipid necrotic core of the plaque were markedly positive for 8-epi PGF2alpha. These cells were also reactive with anti-CD68, an epitope specific for human monocyte/macrophages. 8-epi PGF2alpha immunoreactivity was also detected in cells positive for anti-alpha-smooth muscle actin antibody, which specifically recognizes vascular smooth muscle cells. Our results indicate that 8-epi PGF2alpha and IPF2alpha-I, two distinct F2-isoprostanes and markers of oxidative stress in vivo, are present in human atherosclerotic plaque. Quantitation of these chemically stable products of lipid peroxidation in target tissues, as well as in biological fluids, may aid in the rational development of antioxidant drugs in humans.
Full Text
The Full Text of this article is available as a PDF (450.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai H., Kita T., Yokode M., Narumiya S., Kawai C. Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: different uptake mechanisms for acetylated and oxidized low density lipoproteins. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1375–1382. doi: 10.1016/0006-291x(89)92262-6. [DOI] [PubMed] [Google Scholar]
- Awad J. A., Morrow J. D., Hill K. E., Roberts L. J., 2nd, Burk R. F. Detection and localization of lipid peroxidation in selenium- and vitamin E-deficient rats using F2-isoprostanes. J Nutr. 1994 Jun;124(6):810–816. doi: 10.1093/jn/124.6.810. [DOI] [PubMed] [Google Scholar]
- Banerjee M., Kang K. H., Morrow J. D., Roberts L. J., Newman J. H. Effects of a novel prostaglandin, 8-epi-PGF2 alpha, in rabbit lung in situ. Am J Physiol. 1992 Sep;263(3 Pt 2):H660–H663. doi: 10.1152/ajpheart.1992.263.3.H660. [DOI] [PubMed] [Google Scholar]
- Berliner J. A., Territo M. C., Sevanian A., Ramin S., Kim J. A., Bamshad B., Esterson M., Fogelman A. M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. doi: 10.1172/JCI114562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolli R., Zughaib M., Li X. Y., Tang X. L., Sun J. Z., Triana J. F., McCay P. B. Recurrent ischemia in the canine heart causes recurrent bursts of free radical production that have a cumulative effect on contractile function. A pathophysiological basis for chronic myocardial "stunning". J Clin Invest. 1995 Aug;96(2):1066–1084. doi: 10.1172/JCI118093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. L., Hibbs M. S., Kearney M., Loushin C., Isner J. M. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation. 1995 Apr 15;91(8):2125–2131. doi: 10.1161/01.cir.91.8.2125. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
- Chen M. F., Hsu H. C., Lee Y. T. Effects of acute exercise on the changes of lipid profiles and peroxides, prostanoids, and platelet activation in hypercholesterolemic patients before and after treatment. Prostaglandins. 1994 Sep;48(3):157–174. doi: 10.1016/0090-6980(94)90016-7. [DOI] [PubMed] [Google Scholar]
- Craig W. Y., Poulin S. E., Palomaki G. E., Neveux L. M., Ritchie R. F., Ledue T. B. Oxidation-related analytes and lipid and lipoprotein concentrations in healthy subjects. Arterioscler Thromb Vasc Biol. 1995 Jun;15(6):733–739. doi: 10.1161/01.atv.15.6.733. [DOI] [PubMed] [Google Scholar]
- Delanty N., Reilly M. P., Pratico D., Lawson J. A., McCarthy J. F., Wood A. E., Ohnishi S. T., Fitzgerald D. J., FitzGerald G. A. 8-epi PGF2 alpha generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation. 1997 Jun 3;95(11):2492–2499. doi: 10.1161/01.cir.95.11.2492. [DOI] [PubMed] [Google Scholar]
- Delanty N., Reilly M., Pratico D., FitzGerald D. J., Lawson J. A., FitzGerald G. A. 8-Epi PGF2 alpha: specific analysis of an isoeicosanoid as an index of oxidant stress in vivo. Br J Clin Pharmacol. 1996 Jul;42(1):15–19. doi: 10.1046/j.1365-2125.1996.03804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukunaga M., Makita N., Roberts L. J., 2nd, Morrow J. D., Takahashi K., Badr K. F. Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am J Physiol. 1993 Jun;264(6 Pt 1):C1619–C1624. doi: 10.1152/ajpcell.1993.264.6.C1619. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. Aspects to consider when detecting and measuring lipid peroxidation. Free Radic Res Commun. 1986;1(3):173–184. doi: 10.3109/10715768609083149. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M., Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci. 1990 Apr;15(4):129–135. doi: 10.1016/0968-0004(90)90206-q. [DOI] [PubMed] [Google Scholar]
- Heinecke J. W., Rosen H., Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest. 1984 Nov;74(5):1890–1894. doi: 10.1172/JCI111609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holvoet P., Perez G., Zhao Z., Brouwers E., Bernar H., Collen D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest. 1995 Jun;95(6):2611–2619. doi: 10.1172/JCI117963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsella B. T., O'Mahony D. J., Fitzgerald G. A. The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther. 1997 May;281(2):957–964. [PubMed] [Google Scholar]
- Knox J. B., Sukhova G. K., Whittemore A. D., Libby P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation. 1997 Jan 7;95(1):205–212. doi: 10.1161/01.cir.95.1.205. [DOI] [PubMed] [Google Scholar]
- Lehr H. A., Becker M., Marklund S. L., Hübner C., Arfors K. E., Kohlschütter A., Messmer K. Superoxide-dependent stimulation of leukocyte adhesion by oxidatively modified LDL in vivo. Arterioscler Thromb. 1992 Jul;12(7):824–829. doi: 10.1161/01.atv.12.7.824. [DOI] [PubMed] [Google Scholar]
- Lenz M. L., Hughes H., Mitchell J. R., Via D. P., Guyton J. R., Taylor A. A., Gotto A. M., Jr, Smith C. V. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. J Lipid Res. 1990 Jun;31(6):1043–1050. [PubMed] [Google Scholar]
- Li Q., Cathcart M. K. Protein kinase C activity is required for lipid oxidation of low density lipoprotein by activated human monocytes. J Biol Chem. 1994 Jul 1;269(26):17508–17515. [PubMed] [Google Scholar]
- Loft S., Astrup A., Buemann B., Poulsen H. E. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 1994 May;8(8):534–537. doi: 10.1096/fasebj.8.8.8181672. [DOI] [PubMed] [Google Scholar]
- Lynch S. M., Morrow J. D., Roberts L. J., 2nd, Frei B. Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest. 1994 Mar;93(3):998–1004. doi: 10.1172/JCI117107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORRISON W. R. A FAST, SIMPLE AND RELIABLE METHOD FOR THE MICRODETERMINATION OF PHOSPHORUS IN BIOLOGICAL MATERIALS. Anal Biochem. 1964 Feb;7:218–224. doi: 10.1016/0003-2697(64)90231-3. [DOI] [PubMed] [Google Scholar]
- Mehta A., Yang B., Khan S., Hendricks J. B., Stephen C., Mehta J. L. Oxidized low-density lipoproteins facilitate leukocyte adhesion to aortic intima without affecting endothelium-dependent relaxation. Role of P-selectin. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2076–2083. doi: 10.1161/01.atv.15.11.2076. [DOI] [PubMed] [Google Scholar]
- Morrow J. D., Awad J. A., Kato T., Takahashi K., Badr K. F., Roberts L. J., 2nd, Burk R. F. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest. 1992 Dec;90(6):2502–2507. doi: 10.1172/JCI116143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J., 2nd A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrow J. D., Minton T. A., Badr K. F., Roberts L. J., 2nd Evidence that the F2-isoprostane, 8-epi-prostaglandin F2 alpha, is formed in vivo. Biochim Biophys Acta. 1994 Jan 3;1210(2):244–248. doi: 10.1016/0005-2760(94)90128-7. [DOI] [PubMed] [Google Scholar]
- Morrow J. D., Roberts L. J., 2nd Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical-catalyzed mechanism. Methods Enzymol. 1994;233:163–174. doi: 10.1016/s0076-6879(94)33019-0. [DOI] [PubMed] [Google Scholar]
- Patrignani P., Santini G., Panara M. R., Sciulli M. G., Greco A., Rotondo M. T., di Giamberardino M., Maclouf J., Ciabattoni G., Patrono C. Induction of prostaglandin endoperoxide synthase-2 in human monocytes associated with cyclo-oxygenase-dependent F2-isoprostane formation. Br J Pharmacol. 1996 Jul;118(5):1285–1293. doi: 10.1111/j.1476-5381.1996.tb15535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratico D., Lawson J. A., FitzGerald G. A. Cyclooxygenase-dependent formation of the isoprostane, 8-epi prostaglandin F2 alpha. J Biol Chem. 1995 Apr 28;270(17):9800–9808. doi: 10.1074/jbc.270.17.9800. [DOI] [PubMed] [Google Scholar]
- Praticò D., Smyth E. M., Violi F., FitzGerald G. A. Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms. J Biol Chem. 1996 Jun 21;271(25):14916–14924. doi: 10.1074/jbc.271.25.14916. [DOI] [PubMed] [Google Scholar]
- Praticó D., FitzGerald G. A. Generation of 8-epiprostaglandin F2alpha by human monocytes. Discriminate production by reactive oxygen species and prostaglandin endoperoxide synthase-2. J Biol Chem. 1996 Apr 12;271(15):8919–8924. doi: 10.1074/jbc.271.15.8919. [DOI] [PubMed] [Google Scholar]
- Reilly M., Delanty N., Lawson J. A., FitzGerald G. A. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation. 1996 Jul 1;94(1):19–25. doi: 10.1161/01.cir.94.1.19. [DOI] [PubMed] [Google Scholar]
- Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature. 1990 Feb 8;343(6258):570–572. doi: 10.1038/343570a0. [DOI] [PubMed] [Google Scholar]
- Rosenfeld M. E., Palinski W., Ylä-Herttuala S., Butler S., Witztum J. L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990 May-Jun;10(3):336–349. doi: 10.1161/01.atv.10.3.336. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Salonen J. T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J. L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992 Apr 11;339(8798):883–887. doi: 10.1016/0140-6736(92)90926-t. [DOI] [PubMed] [Google Scholar]
- Skalli O., Ropraz P., Trzeciak A., Benzonana G., Gillessen D., Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. doi: 10.1083/jcb.103.6.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparrow C. P., Parthasarathy S., Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989 Feb 15;264(5):2599–2604. [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J. D., Roberts L. J., 2nd, Hoover R. L., Badr K. F. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest. 1992 Jul;90(1):136–141. doi: 10.1172/JCI115826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Ciabattoni G., Créminon C., Lawson J., Fitzgerald G. A., Patrono C., Maclouf J. Immunological characterization of urinary 8-epi-prostaglandin F2 alpha excretion in man. J Pharmacol Exp Ther. 1995 Oct;275(1):94–100. [PubMed] [Google Scholar]
- Weidtmann A., Scheithe R., Hrboticky N., Pietsch A., Lorenz R., Siess W. Mildly oxidized LDL induces platelet aggregation through activation of phospholipase A2. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1131–1138. doi: 10.1161/01.atv.15.8.1131. [DOI] [PubMed] [Google Scholar]
- Weis J. R., Pitas R. E., Wilson B. D., Rodgers G. M. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J. 1991 Jul;5(10):2459–2465. doi: 10.1096/fasebj.5.10.2065893. [DOI] [PubMed] [Google Scholar]
- Witztum J. L. The oxidation hypothesis of atherosclerosis. Lancet. 1994 Sep 17;344(8925):793–795. doi: 10.1016/s0140-6736(94)92346-9. [DOI] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Särkioja T., Yoshimura T., Leonard E. J., Witztum J. L., Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5252–5256. doi: 10.1073/pnas.88.12.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]