Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 15;100(8):2035–2042. doi: 10.1172/JCI119736

Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis.

L L Shears 1, N Kawaharada 1, E Tzeng 1, T R Billiar 1, S C Watkins 1, I Kovesdi 1, A Lizonova 1, S M Pham 1
PMCID: PMC508394  PMID: 9329968

Abstract

In cardiac transplantation, chronic rejection takes the form of an occlusive vasculopathy. The mechanism underlying this disorder remains unclear. The purpose of this study was to investigate the role nitric oxide (NO) may play in the development of allograft arteriosclerosis. Rat aortic allografts from ACI donors to Wistar Furth recipients with a strong genetic disparity in both major and minor histocompatibility antigens were used for transplantation. Allografts collected at 28 d were found to have significant increases in both inducible NO synthase (iNOS) mRNA and protein as well as in intimal thickness when compared with isografts. Inhibiting NO production with an iNOS inhibitor increased the intimal thickening by 57.2%, indicating that NO suppresses the development of allograft arteriosclerosis. Next, we evaluated the effect of cyclosporine (CsA) on iNOS expression and allograft arteriosclerosis. CsA (10 mg/kg/d) suppressed the expression of iNOS in response to balloon-induced aortic injury. Similarly, CsA inhibited iNOS expression in the aortic allografts, associated with a 65% increase in intimal thickening. Finally, we investigated the effect of adenoviral-mediated iNOS gene transfer on allograft arteriosclerosis. Transduction with iNOS using an adenoviral vector suppressed completely the development of allograft arteriosclerosis in both untreated recipients and recipients treated with CsA. These results suggest that the early immune-mediated upregulation in iNOS expression partially protects aortic allografts from the development of allograft arteriosclerosis, and that iNOS gene transfer strategies may prove useful in preventing the development of this otherwise untreatable disease process.

Full Text

The Full Text of this article is available as a PDF (557.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita K., Dusting G. J., Hickey H. Suppression of nitric oxide production by cyclosporin A and FK506A in rat vascular smooth muscle cells. Clin Exp Pharmacol Physiol. 1994 Mar;21(3):231–233. doi: 10.1111/j.1440-1681.1994.tb02503.x. [DOI] [PubMed] [Google Scholar]
  2. Akyürek L. M., Fellström B. C., Yan Z. Q., Hansson G. K., Funa K., Larsson E. Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts. Am J Pathol. 1996 Dec;149(6):1981–1990. [PMC free article] [PubMed] [Google Scholar]
  3. Ardehali A. Heart transplantation: accelerated graft atherosclerosis. Adv Card Surg. 1995;6:195–205. [PubMed] [Google Scholar]
  4. Aziz S., McDonald T. O., Gohra H. Transplant arterial vasculopathy: evidence for a dual pattern of endothelial injury and the source of smooth muscle cells in lesions of intimal hyperplasia. J Heart Lung Transplant. 1995 Nov-Dec;14(6 Pt 2):S123–S136. [PubMed] [Google Scholar]
  5. Costanzo M. R. The role of histoincompatibility in cardiac allograft vasculopathy. J Heart Lung Transplant. 1995 Nov-Dec;14(6 Pt 2):S180–S184. [PubMed] [Google Scholar]
  6. Davis S. F., Yeung A. C., Meredith I. T., Charbonneau F., Ganz P., Selwyn A. P., Anderson T. J. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation. 1996 Feb 1;93(3):457–462. doi: 10.1161/01.cir.93.3.457. [DOI] [PubMed] [Google Scholar]
  7. Devlin J., Palmer R. M., Gonde C. E., O'Grady J., Heaton N., Tan K. C., Martin J. F., Moncada S., Williams R. Nitric oxide generation. A predictive parameter of acute allograft rejection. Transplantation. 1994 Sep 15;58(5):592–595. [PubMed] [Google Scholar]
  8. Dusting G. J., Macdonald P. S. Endogenous nitric oxide in cardiovascular disease and transplantation. Ann Med. 1995 Jun;27(3):395–406. doi: 10.3109/07853899509002593. [DOI] [PubMed] [Google Scholar]
  9. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibbons G. H. The pathogenesis of graft vascular disease: implications of vascular remodeling. J Heart Lung Transplant. 1995 Nov-Dec;14(6 Pt 2):S149–S158. [PubMed] [Google Scholar]
  12. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  13. Guo J. P., Milhoan K. A., Tuan R. S., Lefer A. M. Beneficial effect of SPM-5185, a cysteine-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res. 1994 Jul;75(1):77–84. doi: 10.1161/01.res.75.1.77. [DOI] [PubMed] [Google Scholar]
  14. Hansson G. K., Geng Y. J., Holm J., Hårdhammar P., Wennmalm A., Jennische E. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med. 1994 Aug 1;180(2):733–738. doi: 10.1084/jem.180.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunley T. E., Iwasaki S., Homma T., Kon V. Nitric oxide and endothelin in pathophysiological settings. Pediatr Nephrol. 1995 Apr;9(2):235–244. doi: 10.1007/BF00860758. [DOI] [PubMed] [Google Scholar]
  16. Häyry P., Mennander A., Tiisala S., Halttunen J., Yilmaz S., Paavonen T. Rat aortic allografts: an experimental model for chronic transplant arteriosclerosis. Transplant Proc. 1991 Feb;23(1 Pt 1):611–612. [PubMed] [Google Scholar]
  17. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jooss K., Yang Y., Wilson J. M. Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum Gene Ther. 1996 Aug 20;7(13):1555–1566. doi: 10.1089/hum.1996.7.13-1555. [DOI] [PubMed] [Google Scholar]
  19. Kerber S., Rahmel A., Heinemann-Vechtel O., Budde T., Deng M., Scheld H. H., Breithardt G. Angiographic, intravascular ultrasound and functional findings early after orthotopic heart transplantation. Int J Cardiol. 1995 Apr;49(2):119–129. doi: 10.1016/0167-5273(95)02292-5. [DOI] [PubMed] [Google Scholar]
  20. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kunz D., Walker G., Eberhardt W., Nitsch D., Pfeilschifter J. Interleukin 1 beta-induced expression of nitric oxide synthase in rat renal mesangial cells is suppressed by cyclosporin A. Biochem Biophys Res Commun. 1995 Nov 13;216(2):438–446. doi: 10.1006/bbrc.1995.2642. [DOI] [PubMed] [Google Scholar]
  22. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Langrehr J. M., Hoffman R. A., Billiar T. R., Lee K. K., Schraut W. H., Simmons R. L. Nitric oxide synthesis in the in vivo allograft response: a possible regulatory mechanism. Surgery. 1991 Aug;110(2):335–342. [PubMed] [Google Scholar]
  24. Lee J. S., Adrie C., Jacob H. J., Roberts J. D., Jr, Zapol W. M., Bloch K. D. Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res. 1996 Feb;78(2):337–342. doi: 10.1161/01.res.78.2.337. [DOI] [PubMed] [Google Scholar]
  25. Marks D. S., Vita J. A., Folts J. D., Keaney J. F., Jr, Welch G. N., Loscalzo J. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest. 1995 Dec;96(6):2630–2638. doi: 10.1172/JCI118328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marumo T., Nakaki T., Hishikawa K., Suzuki H., Kato R., Saruta T. Cyclosporin A inhibits nitric oxide synthase induction in vascular smooth muscle cells. Hypertension. 1995 Apr;25(4 Pt 2):764–768. doi: 10.1161/01.hyp.25.4.764. [DOI] [PubMed] [Google Scholar]
  27. Mehra M. R., Ventura H. O., Smart F. W., Stapleton D. D., Collins T. J., Ramee S. R., Murgo J. P., White C. J. New developments in the diagnosis and management of cardiac allograft vasculopathy. Tex Heart Inst J. 1995;22(2):138–144. [PMC free article] [PubMed] [Google Scholar]
  28. Mehra M. R., Ventura H. O., Stapleton D. D., Smart F. W. The prognostic significance of intimal proliferation in cardiac allograft vasculopathy: a paradigm shift. J Heart Lung Transplant. 1995 Nov-Dec;14(6 Pt 2):S207–S211. [PubMed] [Google Scholar]
  29. Moore W. M., Webber R. K., Jerome G. M., Tjoeng F. S., Misko T. P., Currie M. G. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994 Nov 11;37(23):3886–3888. doi: 10.1021/jm00049a007. [DOI] [PubMed] [Google Scholar]
  30. Nakayama D. K., Geller D. A., Di Silvio M., Bloomgarden G., Davies P., Pitt B. R., Hatakeyama K., Kagamiyama H., Simmons R. L., Billiar T. R. Tetrahydrobiopterin synthesis and inducible nitric oxide production in pulmonary artery smooth muscle. Am J Physiol. 1994 Apr;266(4 Pt 1):L455–L460. doi: 10.1152/ajplung.1994.266.4.L455. [DOI] [PubMed] [Google Scholar]
  31. Newman K. D., Dunn P. F., Owens J. W., Schulick A. H., Virmani R., Sukhova G., Libby P., Dichek D. A. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest. 1995 Dec;96(6):2955–2965. doi: 10.1172/JCI118367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Radomski M. W., Palmer R. M., Moncada S. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987 Nov;92(3):639–646. doi: 10.1111/j.1476-5381.1987.tb11367.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell M. E. Macrophages and transplant arteriosclerosis: known and novel molecules. J Heart Lung Transplant. 1995 Nov-Dec;14(6 Pt 2):S111–S115. [PubMed] [Google Scholar]
  34. Russell M. E., Wallace A. F., Wyner L. R., Newell J. B., Karnovsky M. J. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation. 1995 Aug 1;92(3):457–464. doi: 10.1161/01.cir.92.3.457. [DOI] [PubMed] [Google Scholar]
  35. Russell P. S., Chase C. M., Winn H. J., Colvin R. B. Coronary atherosclerosis in transplanted mouse hearts. I. Time course and immunogenetic and immunopathological considerations. Am J Pathol. 1994 Feb;144(2):260–274. [PMC free article] [PubMed] [Google Scholar]
  36. Russell P. S., Chase C. M., Winn H. J., Colvin R. B. Coronary atherosclerosis in transplanted mouse hearts. II. Importance of humoral immunity. J Immunol. 1994 May 15;152(10):5135–5141. [PubMed] [Google Scholar]
  37. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  38. Stow N. D. Cloning of a DNA fragment from the left-hand terminus of the adenovirus type 2 genome and its use in site-directed mutagenesis. J Virol. 1981 Jan;37(1):171–180. doi: 10.1128/jvi.37.1.171-180.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Suzuki J., Aikawa M., Isobe M., Sekiguchi M., Yazaki Y., Nagai R. Altered expression of smooth muscle and non-muscle myosin heavy chain isoforms in rejected hearts: a sensitive marker for acute rejection and graft coronary arteriosclerosis. Transplant Proc. 1995 Feb;27(1):578–578. [PubMed] [Google Scholar]
  40. Tanaka H., Swanson S. J., Sukhova G., Schoen F. J., Libby P. Early proliferation of medial smooth muscle cells in coronary arteries of rabbit cardiac allografts during immunosuppression with cyclosporine A. Transplant Proc. 1995 Jun;27(3):2062–2065. [PubMed] [Google Scholar]
  41. Tanaka S., Kamiike W., Ito T., Nozaki S., Uchikoshi F., Miyata M., Nakata S., Shirakura R., Matsuda H., Kumura E. Evaluation of nitric oxide during acute rejection after heart transplantation in rats. Transplant Proc. 1995 Feb;27(1):576–577. [PubMed] [Google Scholar]
  42. Tzeng E., Shears L. L., 2nd, Lotze M. T., Billiar T. R. Gene therapy. Curr Probl Surg. 1996 Dec;33(12):961–1041. doi: 10.1016/s0011-3840(05)80020-6. [DOI] [PubMed] [Google Scholar]
  43. Tzeng E., Shears L. L., 2nd, Robbins P. D., Pitt B. R., Geller D. A., Watkins S. C., Simmons R. L., Billiar T. R. Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects on myointimal hyperplasia. Mol Med. 1996 Mar;2(2):211–225. [PMC free article] [PubMed] [Google Scholar]
  44. Ventura H. O., Mehra M. R., Smart F. W., Stapleton D. D. Cardiac allograft vasculopathy: current concepts. Am Heart J. 1995 Apr;129(4):791–799. doi: 10.1016/0002-8703(95)90331-3. [DOI] [PubMed] [Google Scholar]
  45. Ventura H. O., Smart F. W., Stapleton D. D., Toups T., Price H. L. Cardiac allograft vasculopathy: current concepts. J La State Med Soc. 1993 May;145(5):195-8, 200-2. [PubMed] [Google Scholar]
  46. Worrall N. K., Lazenby W. D., Misko T. P., Lin T. S., Rodi C. P., Manning P. T., Tilton R. G., Williamson J. R., Ferguson T. B., Jr Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med. 1995 Jan 1;181(1):63–70. doi: 10.1084/jem.181.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yang X., Chowdhury N., Cai B., Brett J., Marboe C., Sciacca R. R., Michler R. E., Cannon P. J. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest. 1994 Aug;94(2):714–721. doi: 10.1172/JCI117390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. von der Leyen H. E., Gibbons G. H., Morishita R., Lewis N. P., Zhang L., Nakajima M., Kaneda Y., Cooke J. P., Dzau V. J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1137–1141. doi: 10.1073/pnas.92.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES