Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Oct 15;100(8):2043–2053. doi: 10.1172/JCI119737

Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways.

A Blauvelt 1, H Asada 1, M W Saville 1, V Klaus-Kovtun 1, D J Altman 1, R Yarchoan 1, S I Katz 1
PMCID: PMC508395  PMID: 9329969

Abstract

There is substantial evidence that dendritic cells (DC) residing within epithelial surfaces (e.g., Langerhans cells) are the initial cells infected with HIV after mucosal exposure to virus. To study DC-HIV interactions in detail, we propagated Langerhans cell-like DC from cord blood CD34(+) cells and from adult blood plastic-adherent PBMC in the presence of cytokines (GM-CSF, IL-4, and/or TNF-alpha). DC pulsed overnight with HIVBaL or HIVIIIB were infected productively with both viral subtypes (as assessed by PCR, supernatant p24 protein levels, electron microscopy, and antibody staining). Productive infection could be blocked by anti-CD4 mAbs, RANTES (regulated upon activation, normal T cell expressed and secreted) (for HIVBaL), stromal cell-derived factor-1 (for HIVIIIB), or azidothymidine added during the HIV pulse, as well as by blocking DC proliferation. However, pulsing DC with HIV under these blocking conditions had no effect on the ability of DC to capture virus and transmit infection to cocultured antigen-stimulated CD4(+) T cells. Thus, we show by several criteria that (a) productive infection of DC and (b) the ability of DC to capture virus are mediated through separate pathways. We suggest that strategies designed to block mucosal transmission of HIV should consider interfering with both virus infection and virus capture by DC.

Full Text

The Full Text of this article is available as a PDF (731.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  2. Ayehunie S., Groves R. W., Bruzzese A. M., Ruprecht R. M., Kupper T. S., Langhoff E. Acutely infected Langerhans cells are more efficient than T cells in disseminating HIV type 1 to activated T cells following a short cell-cell contact. AIDS Res Hum Retroviruses. 1995 Aug;11(8):877–884. doi: 10.1089/aid.1995.11.877. [DOI] [PubMed] [Google Scholar]
  3. Benkirane M., Corbeau P., Housset V., Devaux C. An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected T cells. EMBO J. 1993 Dec 15;12(13):4909–4921. doi: 10.1002/j.1460-2075.1993.tb06185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger R., Gartner S., Rappersberger K., Foster C. A., Wolff K., Stingl G. Isolation of human immunodeficiency virus type 1 from human epidermis: virus replication and transmission studies. J Invest Dermatol. 1992 Sep;99(3):271–277. doi: 10.1111/1523-1747.ep12616619. [DOI] [PubMed] [Google Scholar]
  5. Biti R., Ffrench R., Young J., Bennetts B., Stewart G., Liang T. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med. 1997 Mar;3(3):252–253. doi: 10.1038/nm0397-252. [DOI] [PubMed] [Google Scholar]
  6. Blauvelt A., Asada H., Klaus-Kovtun V., Altman D. J., Lucey D. R., Katz S. I. Interleukin-15 mRNA is expressed by human keratinocytes Langerhans cells, and blood-derived dendritic cells and is downregulated by ultraviolet B radiation. J Invest Dermatol. 1996 May;106(5):1047–1052. doi: 10.1111/1523-1747.ep12338641. [DOI] [PubMed] [Google Scholar]
  7. Blauvelt A., Katz S. I. The skin as target, vector, and effector organ in human immunodeficiency virus disease. J Invest Dermatol. 1995 Jul;105(1 Suppl):122S–126S. doi: 10.1111/1523-1747.ep12316662. [DOI] [PubMed] [Google Scholar]
  8. Cameron P. U., Freudenthal P. S., Barker J. M., Gezelter S., Inaba K., Steinman R. M. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science. 1992 Jul 17;257(5068):383–387. doi: 10.1126/science.1352913. [DOI] [PubMed] [Google Scholar]
  9. Cameron P. U., Lowe M. G., Crowe S. M., O'Doherty U., Pope M., Gezelter S., Steinman R. M. Susceptibility of dendritic cells to HIV-1 infection in vitro. J Leukoc Biol. 1994 Sep;56(3):257–265. doi: 10.1002/jlb.56.3.257. [DOI] [PubMed] [Google Scholar]
  10. Cameron P. U., Pope M., Gezelter S., Steinman R. M. Infection and apoptotic cell death of CD4+ T cells during an immune response to HIV-1-pulsed dendritic cells. AIDS Res Hum Retroviruses. 1994 Jan;10(1):61–71. doi: 10.1089/aid.1994.10.61. [DOI] [PubMed] [Google Scholar]
  11. Cameron P., Pope M., Granelli-Piperno A., Steinman R. M. Dendritic cells and the replication of HIV-1. J Leukoc Biol. 1996 Feb;59(2):158–171. doi: 10.1002/jlb.59.2.158. [DOI] [PubMed] [Google Scholar]
  12. Caux C., Dezutter-Dambuyant C., Schmitt D., Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992 Nov 19;360(6401):258–261. doi: 10.1038/360258a0. [DOI] [PubMed] [Google Scholar]
  13. Charbonnier A. S., Verrier B., Jacquet C., Massacrier C., Fiers M. M., Mallet F., Dezutter-Dambuyant C., Schmitt D. In vitro HIV1 infection of CD34+ progenitor-derived dendritic/Langerhans cells at different stages of their differentiation in the presence of GM-CSF/TNF alpha. Res Virol. 1996 Mar-Jun;147(2-3):89–95. doi: 10.1016/0923-2516(96)80221-4. [DOI] [PubMed] [Google Scholar]
  14. Claydon E. J., Bennett J., Gor D., Forster S. M. Transient elevation of serum HIV antigen levels associated with intercurrent infection. AIDS. 1991 Jan;5(1):113–114. doi: 10.1097/00002030-199101000-00022. [DOI] [PubMed] [Google Scholar]
  15. Enk C. D., Sredni D., Blauvelt A., Katz S. I. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J Immunol. 1995 May 1;154(9):4851–4856. [PubMed] [Google Scholar]
  16. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  17. Ferbas J. J., Toso J. F., Logar A. J., Navratil J. S., Rinaldo C. R., Jr CD4+ blood dendritic cells are potent producers of IFN-alpha in response to in vitro HIV-1 infection. J Immunol. 1994 May 1;152(9):4649–4662. [PubMed] [Google Scholar]
  18. Goletti D., Weissman D., Jackson R. W., Graham N. M., Vlahov D., Klein R. S., Munsiff S. S., Ortona L., Cauda R., Fauci A. S. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol. 1996 Aug 1;157(3):1271–1278. [PubMed] [Google Scholar]
  19. Granelli-Piperno A., Moser B., Pope M., Chen D., Wei Y., Isdell F., O'Doherty U., Paxton W., Koup R., Mojsov S. Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J Exp Med. 1996 Dec 1;184(6):2433–2438. doi: 10.1084/jem.184.6.2433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ho D. D. HIV-1 viraemia and influenza. Lancet. 1992 Jun 20;339(8808):1549–1549. doi: 10.1016/0140-6736(92)91321-x. [DOI] [PubMed] [Google Scholar]
  21. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  22. Knight S. C. Bone-marrow-derived dendritic cells and the pathogenesis of AIDS. AIDS. 1996 Jul;10(8):807–817. doi: 10.1097/00002030-199607000-00003. [DOI] [PubMed] [Google Scholar]
  23. Langhoff E., Terwilliger E. F., Bos H. J., Kalland K. H., Poznansky M. C., Bacon O. M., Haseltine W. A. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7998–8002. doi: 10.1073/pnas.88.18.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ludewig B., Gelderblom H. R., Becker Y., Schäfer A., Pauli G. Transmission of HIV-1 from productively infected mature Langerhans cells to primary CD4+ T lymphocytes results in altered T cell responses with enhanced production of IFN-gamma and IL-10. Virology. 1996 Jan 1;215(1):51–60. doi: 10.1006/viro.1996.0006. [DOI] [PubMed] [Google Scholar]
  25. Macatonia S. E., Patterson S., Knight S. C. Suppression of immune responses by dendritic cells infected with HIV. Immunology. 1989 Jul;67(3):285–289. [PMC free article] [PubMed] [Google Scholar]
  26. O'Brien T. R., Winkler C., Dean M., Nelson J. A., Carrington M., Michael N. L., White G. C., 2nd HIV-1 infection in a man homozygous for CCR5 delta 32. Lancet. 1997 Apr 26;349(9060):1219–1219. doi: 10.1016/s0140-6736(97)24017-1. [DOI] [PubMed] [Google Scholar]
  27. O'Doherty U., Peng M., Gezelter S., Swiggard W. J., Betjes M., Bhardwaj N., Steinman R. M. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology. 1994 Jul;82(3):487–493. [PMC free article] [PubMed] [Google Scholar]
  28. Pinchuk L. M., Polacino P. S., Agy M. B., Klaus S. J., Clark E. A. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection. Immunity. 1994 Jul;1(4):317–325. doi: 10.1016/1074-7613(94)90083-3. [DOI] [PubMed] [Google Scholar]
  29. Pope M., Betjes M. G., Romani N., Hirmand H., Cameron P. U., Hoffman L., Gezelter S., Schuler G., Steinman R. M. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell. 1994 Aug 12;78(3):389–398. doi: 10.1016/0092-8674(94)90418-9. [DOI] [PubMed] [Google Scholar]
  30. Pope M., Gezelter S., Gallo N., Hoffman L., Steinman R. M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med. 1995 Dec 1;182(6):2045–2056. doi: 10.1084/jem.182.6.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramazzotti E., Marconi A., Re M. C., Girolomoni G., Cenacchi G., Vignoli M., Zambruno G., Furlini G., La Placa M., Giannetti A. In vitro infection of human epidermal Langerhans' cells with HIV-1. Immunology. 1995 May;85(1):94–98. [PMC free article] [PubMed] [Google Scholar]
  32. Romani N., Gruner S., Brang D., Kämpgen E., Lenz A., Trockenbacher B., Konwalinka G., Fritsch P. O., Steinman R. M., Schuler G. Proliferating dendritic cell progenitors in human blood. J Exp Med. 1994 Jul 1;180(1):83–93. doi: 10.1084/jem.180.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Romani N., Lenz A., Glassel H., Stössel H., Stanzl U., Majdic O., Fritsch P., Schuler G. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol. 1989 Nov;93(5):600–609. doi: 10.1111/1523-1747.ep12319727. [DOI] [PubMed] [Google Scholar]
  34. Romani N., Schuler G. The immunologic properties of epidermal Langerhans cells as a part of the dendritic cell system. Springer Semin Immunopathol. 1992;13(3-4):265–279. doi: 10.1007/BF00200527. [DOI] [PubMed] [Google Scholar]
  35. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994 Apr 1;179(4):1109–1118. doi: 10.1084/jem.179.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saville M. W., Taga K., Foli A., Broder S., Tosato G., Yarchoan R. Interleukin-10 suppresses human immunodeficiency virus-1 replication in vitro in cells of the monocyte/macrophage lineage. Blood. 1994 Jun 15;83(12):3591–3599. [PubMed] [Google Scholar]
  37. Soto-Ramirez L. E., Renjifo B., McLane M. F., Marlink R., O'Hara C., Sutthent R., Wasi C., Vithayasai P., Vithayasai V., Apichartpiyakul C. HIV-1 Langerhans' cell tropism associated with heterosexual transmission of HIV. Science. 1996 Mar 1;271(5253):1291–1293. doi: 10.1126/science.271.5253.1291. [DOI] [PubMed] [Google Scholar]
  38. Spira A. I., Marx P. A., Patterson B. K., Mahoney J., Koup R. A., Wolinsky S. M., Ho D. D. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996 Jan 1;183(1):215–225. doi: 10.1084/jem.183.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stanley S. K., Ostrowski M. A., Justement J. S., Gantt K., Hedayati S., Mannix M., Roche K., Schwartzentruber D. J., Fox C. H., Fauci A. S. Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N Engl J Med. 1996 May 9;334(19):1222–1230. doi: 10.1056/NEJM199605093341903. [DOI] [PubMed] [Google Scholar]
  40. Staprans S. I., Hamilton B. L., Follansbee S. E., Elbeik T., Barbosa P., Grant R. M., Feinberg M. B. Activation of virus replication after vaccination of HIV-1-infected individuals. J Exp Med. 1995 Dec 1;182(6):1727–1737. doi: 10.1084/jem.182.6.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  42. Tang S. B., Levy J. A. Inactivation of HIV-1 by trypsin and its use in demonstrating specific virus infection of cells. J Virol Methods. 1991 Jun;33(1-2):39–46. doi: 10.1016/0166-0934(91)90005-k. [DOI] [PubMed] [Google Scholar]
  43. Theodorou I., Meyer L., Magierowska M., Katlama C., Rouzioux C. HIV-1 infection in an individual homozygous for CCR5 delta 32. Seroco Study Group. Lancet. 1997 Apr 26;349(9060):1219–1220. [PubMed] [Google Scholar]
  44. Tsunetsugu-Yokota Y., Akagawa K., Kimoto H., Suzuki K., Iwasaki M., Yasuda S., Häusser G., Hultgren C., Meyerhans A., Takemori T. Monocyte-derived cultured dendritic cells are susceptible to human immunodeficiency virus infection and transmit virus to resting T cells in the process of nominal antigen presentation. J Virol. 1995 Jul;69(7):4544–4547. doi: 10.1128/jvi.69.7.4544-4547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  46. Weissman D., Li Y., Ananworanich J., Zhou L. J., Adelsberger J., Tedder T. F., Baseler M., Fauci A. S. Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):826–830. doi: 10.1073/pnas.92.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weissman D., Li Y., Orenstein J. M., Fauci A. S. Both a precursor and a mature population of dendritic cells can bind HIV. However, only the mature population that expresses CD80 can pass infection to unstimulated CD4+ T cells. J Immunol. 1995 Oct 15;155(8):4111–4117. [PubMed] [Google Scholar]
  48. Wood G. S., Warner N. L., Warnke R. A. Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983 Jul;131(1):212–216. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES