Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2182–2188. doi: 10.1172/JCI119754

Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells.

T A McCaffrey 1, B Du 1, S Consigli 1, P Szabo 1, P J Bray 1, L Hartner 1, B B Weksler 1, T A Sanborn 1, G Bergman 1, H L Bush Jr 1
PMCID: PMC508412  PMID: 9410894

Abstract

Cells proliferating from human atherosclerotic lesions are resistant to the antiproliferative effect of TGF-beta1, a key factor in wound repair. DNA from human atherosclerotic and restenotic lesions was used to test the hypothesis that microsatellite instability leads to specific loss of the Type II receptor for TGF-beta1 (TbetaR-II), causing acquired resistance to TGF-beta1. High fidelity PCR and restriction analysis was adapted to analyze deletions in an A10 microsatellite within TbetaR-II. DNA from lesions, and cells grown from lesions, showed acquired 1 and 2 bp deletions in TbetaR-II, while microsatellites in the hMSH3 and hMSH6 genes, and hypermutable regions of p53 were unaffected. Sequencing confirmed that these deletions occurred principally in the replication error-prone A10 microsatellite region, though nonmicrosatellite mutations were observed. The mutations could be identified within specific patches of the lesion, while the surrounding tissue, or unaffected arteries, exhibited the wild-type genotype. This microsatellite deletion causes frameshift loss of receptor function, and thus, resistance to the antiproliferative and apoptotic effects of TGF-beta1. We propose that microsatellite instability in TbetaR-II disables growth inhibitory pathways, allowing monoclonal selection of a disease-prone cell type within some vascular lesions.

Full Text

The Full Text of this article is available as a PDF (997.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvanitakis L., Yaseen N., Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol. 1995 Aug 1;155(3):1047–1056. [PubMed] [Google Scholar]
  2. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. R., Evan G. I., Schwartz S. M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995 May;95(5):2266–2274. doi: 10.1172/JCI117917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Björkerud S. Effects of transforming growth factor-beta 1 on human arterial smooth muscle cells in vitro. Arterioscler Thromb. 1991 Jul-Aug;11(4):892–902. [PubMed] [Google Scholar]
  5. Bochaton-Piallat M. L., Gabbiani F., Redard M., Desmoulière A., Gabbiani G. Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am J Pathol. 1995 May;146(5):1059–1064. [PMC free article] [PubMed] [Google Scholar]
  6. Casalone R., Granata P., Minelli E., Portentoso P., Giudici A., Righi R., Castelli P., Socrate A., Frigerio B. Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum Genet. 1991 Jun;87(2):139–143. doi: 10.1007/BF00204169. [DOI] [PubMed] [Google Scholar]
  7. Chadwick R. B., Conrad M. P., McGinnis M. D., Johnston-Dow L., Spurgeon S. L., Kronick M. N. Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase. Biotechniques. 1996 Apr;20(4):676–683. doi: 10.2144/19962004676. [DOI] [PubMed] [Google Scholar]
  8. Chan P., Patel M., Betteridge L., Munro E., Schachter M., Wolfe J., Sever P. Abnormal growth regulation of vascular smooth muscle cells by heparin in patients with restenosis. Lancet. 1993 Feb 6;341(8841):341–342. doi: 10.1016/0140-6736(93)90139-8. [DOI] [PubMed] [Google Scholar]
  9. Choi M. E., Ballermann B. J. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem. 1995 Sep 8;270(36):21144–21150. doi: 10.1074/jbc.270.36.21144. [DOI] [PubMed] [Google Scholar]
  10. D'Agostini F., Fronza G., Campomenosi P., Izzotti A., Petrilli G. L., Abbondandolo A., De Flora S. Cancer biomarkers in human atherosclerotic lesions: no evidence of p53 involvement. Cancer Epidemiol Biomarkers Prev. 1995 Mar;4(2):111–115. [PubMed] [Google Scholar]
  11. Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–432. doi: 10.1126/science.274.5286.430. [DOI] [PubMed] [Google Scholar]
  12. Grainger D. J., Kemp P. R., Liu A. C., Lawn R. M., Metcalfe J. C. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature. 1994 Aug 11;370(6489):460–462. doi: 10.1038/370460a0. [DOI] [PubMed] [Google Scholar]
  13. Grainger D. J., Kemp P. R., Metcalfe J. C., Liu A. C., Lawn R. M., Williams N. R., Grace A. A., Schofield P. M., Chauhan A. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med. 1995 Jan;1(1):74–79. doi: 10.1038/nm0195-74. [DOI] [PubMed] [Google Scholar]
  14. Grainger D. J., Weissberg P. L., Metcalfe J. C. Tamoxifen decreases the rate of proliferation of rat vascular smooth-muscle cells in culture by inducing production of transforming growth factor beta. Biochem J. 1993 Aug 15;294(Pt 1):109–112. doi: 10.1042/bj2940109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grainger D. J., Witchell C. M., Watson J. V., Metcalfe J. C., Weissberg P. L. Heparin decreases the rate of proliferation of rat vascular smooth muscle cells by releasing transforming growth factor beta-like activity from serum. Cardiovasc Res. 1993 Dec;27(12):2238–2247. doi: 10.1093/cvr/27.12.2238. [DOI] [PubMed] [Google Scholar]
  16. Hayashi H., Abdollah S., Qiu Y., Cai J., Xu Y. Y., Grinnell B. W., Richardson M. A., Topper J. N., Gimbrone M. A., Jr, Wrana J. L. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997 Jun 27;89(7):1165–1173. doi: 10.1016/s0092-8674(00)80303-7. [DOI] [PubMed] [Google Scholar]
  17. Ishikawa Y., Fujioka Y., Kitagawa Y., Nobusawa A., Takahashi A., Taniguchi T., Yokoyama M. [Restenosis after percutaneous transluminal coronary angioplasty in the elderly--risk factor analysis]. Nihon Ronen Igakkai Zasshi. 1995 Jul;32(7):491–496. doi: 10.3143/geriatrics.32.491. [DOI] [PubMed] [Google Scholar]
  18. Kim I. Y., Ahn H. J., Zelner D. J., Shaw J. W., Sensibar J. A., Kim J. H., Kato M., Lee C. Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res. 1996 Jan 1;56(1):44–48. [PubMed] [Google Scholar]
  19. King C. M., Gillespie E. S., McKenna P. G., Barnett Y. A. An investigation of mutation as a function of age in humans. Mutat Res. 1994 Aug;316(2):79–90. doi: 10.1016/0921-8734(94)90010-8. [DOI] [PubMed] [Google Scholar]
  20. Kojima S., Harpel P. C., Rifkin D. B. Lipoprotein (a) inhibits the generation of transforming growth factor beta: an endogenous inhibitor of smooth muscle cell migration. J Cell Biol. 1991 Jun;113(6):1439–1445. doi: 10.1083/jcb.113.6.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lin H. Y., Wang X. F., Ng-Eaton E., Weinberg R. A., Lodish H. F. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992 Feb 21;68(4):775–785. doi: 10.1016/0092-8674(92)90152-3. [DOI] [PubMed] [Google Scholar]
  22. Lu S. L., Zhang W. C., Akiyama Y., Nomizu T., Yuasa Y. Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res. 1996 Oct 15;56(20):4595–4598. [PubMed] [Google Scholar]
  23. Malkhosyan S., Rampino N., Yamamoto H., Perucho M. Frameshift mutator mutations. Nature. 1996 Aug 8;382(6591):499–500. doi: 10.1038/382499a0. [DOI] [PubMed] [Google Scholar]
  24. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995 Jun 2;268(5215):1336–1338. doi: 10.1126/science.7761852. [DOI] [PubMed] [Google Scholar]
  25. McCaffrey T. A., Consigli S., Du B., Falcone D. J., Sanborn T. A., Spokojny A. M., Bush H. L., Jr Decreased type II/type I TGF-beta receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-beta1. J Clin Invest. 1995 Dec;96(6):2667–2675. doi: 10.1172/JCI118333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCaffrey T. A., Falcone D. J., Brayton C. F., Agarwal L. A., Welt F. G., Weksler B. B. Transforming growth factor-beta activity is potentiated by heparin via dissociation of the transforming growth factor-beta/alpha 2-macroglobulin inactive complex. J Cell Biol. 1989 Jul;109(1):441–448. doi: 10.1083/jcb.109.1.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCaffrey T. A., Falcone D. J., Du B. Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol. 1992 Aug;152(2):430–440. doi: 10.1002/jcp.1041520226. [DOI] [PubMed] [Google Scholar]
  28. McCaffrey T. A., Falcone D. J. Evidence for an age-related dysfunction in the antiproliferative response to transforming growth factor-beta in vascular smooth muscle cells. Mol Biol Cell. 1993 Mar;4(3):315–322. doi: 10.1091/mbc.4.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCaffrey T. A., Pomerantz K. B., Sanborn T. A., Spokojny A. M., Du B., Park M. H., Folk J. E., Lamberg A., Kivirikko K. I., Falcone D. J. Specific inhibition of eIF-5A and collagen hydroxylation by a single agent. Antiproliferative and fibrosuppressive effects on smooth muscle cells from human coronary arteries. J Clin Invest. 1995 Feb;95(2):446–455. doi: 10.1172/JCI117684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mehta V. Y., Jorgensen M. B., Raizner A. E., Wolde-Tsadik G., Mahrer P. R., Mansukhani P. Spontaneous regression of restenosis: an angiographic study. J Am Coll Cardiol. 1995 Sep;26(3):696–702. doi: 10.1016/0735-1097(95)00335-2. [DOI] [PubMed] [Google Scholar]
  31. Muñoz-Antonia T., Li X., Reiss M., Jackson R., Antonia S. A mutation in the transforming growth factor beta type II receptor gene promoter associated with loss of gene expression. Cancer Res. 1996 Nov 1;56(21):4831–4835. [PubMed] [Google Scholar]
  32. Nikol S., Isner J. M., Pickering J. G., Kearney M., Leclerc G., Weir L. Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest. 1992 Oct;90(4):1582–1592. doi: 10.1172/JCI116027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reiss M., Vellucci V. F., Zhou Z. L. Mutant p53 tumor suppressor gene causes resistance to transforming growth factor beta 1 in murine keratinocytes. Cancer Res. 1993 Feb 15;53(4):899–904. [PubMed] [Google Scholar]
  34. Rembold C. Could atherosclerosis originate from defective smooth muscle cell death (apoptosis)? Perspect Biol Med. 1996 Spring;39(3):405–408. doi: 10.1353/pbm.1996.0000. [DOI] [PubMed] [Google Scholar]
  35. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  36. Schwartz S. M., Majesky M. W., Murry C. E. The intima: development and monoclonal responses to injury. Atherosclerosis. 1995 Dec;118 (Suppl):S125–S140. [PubMed] [Google Scholar]
  37. Shibata D., Navidi W., Salovaara R., Li Z. H., Aaltonen L. A. Somatic microsatellite mutations as molecular tumor clocks. Nat Med. 1996 Jun;2(6):676–681. doi: 10.1038/nm0696-676. [DOI] [PubMed] [Google Scholar]
  38. Spandidos D. A., Ergazaki M., Arvanitis D., Kiaris H. Microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun. 1996 Mar 7;220(1):137–140. doi: 10.1006/bbrc.1996.0370. [DOI] [PubMed] [Google Scholar]
  39. Vairapandi M., Duker N. J. Excision of ultraviolet-induced photoproducts of 5-methylcytosine from DNA. Mutat Res. 1994 Sep;315(2):85–94. doi: 10.1016/0921-8777(94)90009-4. [DOI] [PubMed] [Google Scholar]
  40. Wang J., Sun L., Myeroff L., Wang X., Gentry L. E., Yang J., Liang J., Zborowska E., Markowitz S., Willson J. K. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995 Sep 15;270(37):22044–22049. doi: 10.1074/jbc.270.37.22044. [DOI] [PubMed] [Google Scholar]
  41. Wrana J. L., Attisano L., Wieser R., Ventura F., Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341–347. doi: 10.1038/370341a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES