Abstract
To explore the possibility that vitamin D status regulates sulfate homeostasis, plasma sulfate levels, renal sulfate excretion, and the expression of the renal Na-SO4 cotransporter were evaluated in vitamin D-deficient (D-D-) rats and in D-D- rats rendered normocalcemic by either vitamin D or calcium/lactose supplementation. D-D- rats had significantly lower plasma sulfate levels than control animals (0.93+/-0.01 and 1.15+/-0.05 mM, respectively, P < 0.05), and fractional sulfate renal excretion was approximately threefold higher comparing D-D- and control rats. A decrease in renal cortical brush border membrane Na-SO4 cotransport activity, associated with a parallel decrease in both renal Na-SO4 cotransport protein and mRNA content (78+/-3 and 73+/-3% decreases, respectively, compared with control values), was also observed in D-D- rats. Vitamin D supplementation resulted in a return to normal of plasma sulfate, fractional sulfate excretion, and both renal Na-SO4 cotransport mRNA and protein. In contrast, renal sulfate excretion and renal Na-SO4 cotransport activity, protein abundance, and mRNA remained decreased in vitamin D-depleted rats fed a diet supplemented with lactose and calcium, despite that these rats were normocalcemic, and had significantly lower levels of parathyroid hormone and 25(OH)- and 1,25(OH)2-vitamin D levels than the vitamin D-supplemented groups. These results demonstrate that vitamin D modulates renal Na-SO4 sulfate cotransport and sulfate homeostasis. The ability of vitamin D status to regulate Na-SO4 cotransport appears to be a direct effect, and is not mediated by the effects of vitamin D on plasma calcium or parathyroid hormone levels. Because sulfate is required for synthesis of essential matrix components, abnormal sulfate metabolism in vitamin D-deficient animals may contribute to producing some of the abnormalities observed in rickets and osteomalacia.
Full Text
The Full Text of this article is available as a PDF (244.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiel C., Kuntziger H., Couette S., Coureau C., Bergounioux N. Evidence for a parathyroid hormone-independent calcium modulation of phosphate transport along the nephron. J Clin Invest. 1976 Feb;57(2):256–263. doi: 10.1172/JCI108276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Au W. Y., Raisz L. G. Restoration of parathyroid responsiveness in vitamin D-deficient rats by parenteral calcium or dietary lactose. J Clin Invest. 1967 Oct;46(10):1572–1578. doi: 10.1172/JCI105648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakhtian S., Kimura R. E., Galinsky R. E. Age-related changes in homeostasis of inorganic sulfate in male F-344 rats. Mech Ageing Dev. 1993 Jan;66(3):257–267. doi: 10.1016/0047-6374(93)90013-h. [DOI] [PubMed] [Google Scholar]
- Biber J., Stieger B., Haase W., Murer H. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta. 1981 Oct 2;647(2):169–176. doi: 10.1016/0005-2736(81)90243-1. [DOI] [PubMed] [Google Scholar]
- Boskey A. L. Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 1989 May;6(2):111–123. doi: 10.1016/0169-6009(89)90044-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Custer M., Murer H., Biber J. Nephron localization of Na/SO4(2-)-cotransport-related mRNA and protein. Pflugers Arch. 1994 Dec;429(2):165–168. doi: 10.1007/BF00374308. [DOI] [PubMed] [Google Scholar]
- Friedlander G., Couette S., Coureau C., Amiel C. Mechanisms whereby extracellular adenosine 3',5'-monophosphate inhibits phosphate transport in cultured opossum kidney cells and in rat kidney. Physiological implication. J Clin Invest. 1992 Sep;90(3):848–858. doi: 10.1172/JCI115960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herak-Kramberger C. M., Spindler B., Biber J., Murer H., Sabolić I. Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch. 1996 Jun;432(2):336–344. doi: 10.1007/s004240050141. [DOI] [PubMed] [Google Scholar]
- Humphries D. E., Silbert C. K., Silbert J. E. Glycosaminoglycan production by bovine aortic endothelial cells cultured in sulfate-depleted medium. J Biol Chem. 1986 Jul 15;261(20):9122–9127. [PubMed] [Google Scholar]
- Hästbacka J., Superti-Furga A., Wilcox W. R., Rimoin D. L., Cohn D. H., Lander E. S. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am J Hum Genet. 1996 Feb;58(2):255–262. [PMC free article] [PubMed] [Google Scholar]
- Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
- Ito K., Kimata K., Sobue M., Suzuki S. Altered proteoglycan synthesis by epiphyseal cartilages in culture at low SO4(2-) concentration. J Biol Chem. 1982 Jan 25;257(2):917–923. [PubMed] [Google Scholar]
- Kilav R., Silver J., Biber J., Murer H., Naveh-Many T. Coordinate regulation of rat renal parathyroid hormone receptor mRNA and Na-Pi cotransporter mRNA and protein. Am J Physiol. 1995 Jun;268(6 Pt 2):F1017–F1022. doi: 10.1152/ajprenal.1995.268.6.F1017. [DOI] [PubMed] [Google Scholar]
- Koike T., Iwamoto M., Shimazu A., Nakashima K., Suzuki F., Kato Y. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan, and cyclic AMP responses of chondrocytes to PTH. J Clin Invest. 1990 Mar;85(3):626–631. doi: 10.1172/JCI114484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollenkirchen U., Fox J., Walters M. R. Normocalcemia without hyperparathyroidism in vitamin D-deficient rats. J Bone Miner Res. 1991 Mar;6(3):273–278. doi: 10.1002/jbmr.5650060309. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lötscher M., Custer M., Quabius E. S., Kaissling B., Murer H., Biber J. Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflugers Arch. 1996 Jul;432(3):373–378. doi: 10.1007/s004240050147. [DOI] [PubMed] [Google Scholar]
- Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mankin H. J., Lippiello L. Nucleic acid and protein synthesis in epiphyseal plates of rachitic rats. An autoradiographic study. J Bone Joint Surg Am. 1969 Jul;51(5):862–874. [PubMed] [Google Scholar]
- Markovich D., Bissig M., Sorribas V., Hagenbuch B., Meier P. J., Murer H. Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. Functional characterization and molecular identification. J Biol Chem. 1994 Jan 28;269(4):3022–3026. [PubMed] [Google Scholar]
- Murer H., Markovich D., Biber J. Renal and small intestinal sodium-dependent symporters of phosphate and sulphate. J Exp Biol. 1994 Nov;196:167–181. doi: 10.1242/jeb.196.1.167. [DOI] [PubMed] [Google Scholar]
- Neiberger R. E. Developmental changes in the renal capacity for sulfate reabsorption in the guinea pig. Pediatr Nephrol. 1992 Jan;6(1):65–67. doi: 10.1007/BF00856839. [DOI] [PubMed] [Google Scholar]
- Pena D. R., Neiberger R. E. Developmental differences in renal sulfate reabsorption: transport kinetics in brush border membrane vesicles. Pediatr Nephrol. 1992 Nov;6(6):532–535. doi: 10.1007/BF00866495. [DOI] [PubMed] [Google Scholar]
- Pita J. C., Cuervo L. A., Madruga J. E., Muller F. J., Howell D. S. Evidence for a role of proteinpolysaccharides in regulation of mineral phase separation in calcifying cartilage. J Clin Invest. 1970 Dec;49(12):2188–2197. doi: 10.1172/JCI106437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pritchard J. B., Renfro J. L. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci U S A. 1983 May;80(9):2603–2607. doi: 10.1073/pnas.80.9.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider E. G., Durham J. C., Sacktor B. Sodium-dependent transport of inorganic sulfate by rabbit renal brush-border membrane vesicles. Effects of other ions. J Biol Chem. 1984 Dec 10;259(23):14591–14599. [PubMed] [Google Scholar]
- Sugahara K., Schwartz N. B. Defect in 3'-phosphoadenosine 5'-phosphosulfate formation in brachymorphic mice. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6615–6618. doi: 10.1073/pnas.76.12.6615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Superti-Furga A. A defect in the metabolic activation of sulfate in a patient with achondrogenesis type IB. Am J Hum Genet. 1994 Dec;55(6):1137–1145. [PMC free article] [PubMed] [Google Scholar]
- Tallgren L. G. Inorganic sulphates in relation to the serum thyroxine level and in renal failure. Acta Med Scand Suppl. 1980;640:1–100. [PubMed] [Google Scholar]
- Turner G., Coureau C., Rabin M. R., Escoubet B., Hruby M., Walrant O., Silve C. Parathyroid hormone (PTH)/PTH-related protein receptor messenger ribonucleic acid expression and PTH response in a rat model of secondary hyperparathyroidism associated with vitamin D deficiency. Endocrinology. 1995 Sep;136(9):3751–3758. doi: 10.1210/endo.136.9.7649081. [DOI] [PubMed] [Google Scholar]