Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Apr;5(2):210–225. doi: 10.1016/j.nurt.2008.01.007

Protection against Parkinson’s disease progression: Clinical experience

Peter A LeWitt 1,2,3,, Danette C Taylor 1,4
PMCID: PMC5084164  PMID: 18394564

Summary

Treatments with potential neuroprotective capability for Parkinson’s disease (PD) have been investigated in randomized, controlled, clinical trials and other studies since the mid-1980s. Although promising leads have arisen, no therapy has been proven to halt or slow disease progression. Several large-scale studies have highlighted progress in methodology, as well as the frustrations of translating laboratory science to practical applications. This review summarizes findings from clinical trials with several classes of compounds, including monoamine oxidase-B inhibitors (selegiline, lazabemide, rasagiline), dopaminergic drugs (ropinirole, pramipexole, levodopa), antioxidant strategies (α-tocopherol), mitochondrial energy enhancers (coenzyme Q10, creatine), antiapoptotic agents (TCH346, minocycline, CEP-1347), and antiglutamatergic compounds (riluzole). Beyond small-molecule pharmacology, gene therapy approaches, such as delivering neurotrophic substances (e.g., neurturin) by viral vector, are the next generation of treatment options.

Key Words: Parkinson’s disease, neuroprotection, neurodegeneration, clinical trials, disease modification

References

  • 1.Anderson DW, Bradbury KA, Schneider JS. Neuroprotection in Parkinson models varies with toxin administration protocol. Eur J Neurosci. 2006;24:3174–3182. doi: 10.1111/j.1460-9568.2006.05192.x. [DOI] [PubMed] [Google Scholar]
  • 2.Hirsch EC. How to judge animal models of Parkinson’s disease in terms of neuroprotection. J Neural Transm Suppl. 2006;70:255–260. doi: 10.1007/978-3-211-45295-0_39. [DOI] [PubMed] [Google Scholar]
  • 3.Ravina BM, Fagan SC, Hart RG, et al. Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology. 2003;60:1234–1240. doi: 10.1212/01.wnl.0000058760.13152.1a. [DOI] [PubMed] [Google Scholar]
  • 4.Suchowersky O, Gronseth G, Perlmutter J, Reich S, Zesiewicz T, Weiner WJ. Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66:976–982. doi: 10.1212/01.wnl.0000206363.57955.1b. [DOI] [PubMed] [Google Scholar]
  • 5.Goetz CG, Koller WC, Poewe W, et al. Management of Parkinson’s disease: an evidence-based review. Mov Disorders. 2002;17(Suppl 4):S1–S166. doi: 10.1002/mds.5555. [DOI] [PubMed] [Google Scholar]
  • 6.Goetz CG, Poewe W, Rascol O, Sampaio C. Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disorders. 2005;20:523–529. doi: 10.1002/mds.20464. [DOI] [PubMed] [Google Scholar]
  • 7.Fearnley J, Lees AJ. Aging and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114:2283–2301. doi: 10.1093/brain/114.5.2283. [DOI] [PubMed] [Google Scholar]
  • 8.Parkinson Study Group DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol. 1989;46:1052–1060. doi: 10.1001/archneur.1989.00520460028009. [DOI] [PubMed] [Google Scholar]
  • 9.Parkinson Study Group Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1989;321:1364–1371. doi: 10.1056/NEJM198911163212004. [DOI] [PubMed] [Google Scholar]
  • 10.Parkinson Study Group Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–183. doi: 10.1056/NEJM199301213280305. [DOI] [PubMed] [Google Scholar]
  • 11.Shults CW, Haas RH, Beal MF. A possible role of coenzyme Q10 in the etiology and treatment of Parkinson’s disease. Biofactors. 1999;9:267–272. doi: 10.1002/biof.5520090223. [DOI] [PubMed] [Google Scholar]
  • 12.Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol. 2001;49:561–574. [PubMed] [Google Scholar]
  • 13.Lipton SA, Gu Z, Nakamura T. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol. 2007;82:1–27. doi: 10.1016/S0074-7742(07)82001-0. [DOI] [PubMed] [Google Scholar]
  • 14.Deutch AY. Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson’s disease. J Neural Transm Suppl. 2006;70:67–70. doi: 10.1007/978-3-211-45295-0_12. [DOI] [PubMed] [Google Scholar]
  • 15.Zigmond MJ. Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism Neurobiol Dis. 1997;4:247–253. doi: 10.1006/nbdi.1997.0157. [DOI] [PubMed] [Google Scholar]
  • 16.Fahn S, Oakes D, Shoulson I, Parkinson Study Group et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–2508. doi: 10.1056/NEJMoa033447. [DOI] [PubMed] [Google Scholar]
  • 17.Fahn S, Elton RL, Members of the UPDRS Development Committee . Unified Parkinson Disease Rating Scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M, editors. Recent developments in Parkinson’s disease. Florham Park, NJ: Macmillan Healthcare Information; 1987. pp. 153–164. [Google Scholar]
  • 18.Shults CW, Oakes D, Kieburtz K, Parkinson Study Group et al. Effects of coenzyme Q10 in early Parkinson’s disease: evidence for slowing of the functional decline. Arch Neurol. 2002;59:1541–1550. doi: 10.1001/archneur.59.10.1541. [DOI] [PubMed] [Google Scholar]
  • 19.Guimaraes P, Kieburtz K, Goetz CG, Elm JJ, Palesch YY, Huang P, Ravina B, Tanner CM, Tilley BC. Non-linearity of Parkinson’s disease progression: implications for sample size calculations in clinical trials. Clin Trials. 2005;2:509–518. doi: 10.1191/1740774505cn125oa. [DOI] [PubMed] [Google Scholar]
  • 20.Goetz CG, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord. 2007;22:41–47. doi: 10.1002/mds.21198. [DOI] [PubMed] [Google Scholar]
  • 21.Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64:208–215. doi: 10.1212/01.WNL.0000149403.14458.7F. [DOI] [PubMed] [Google Scholar]
  • 22.Marek K, Jennings D, Seibyl J. Do dopamine agonists or levodopa modify Parkinson’s disease progression? Eur J Neurol. 2002;9(Suppl 3):15–22. doi: 10.1046/j.1468-1331.9.s3.2.x. [DOI] [PubMed] [Google Scholar]
  • 23.Schillaci O, Pierantozzi M, Filippi L, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with 123I-FP-CIT in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:1452–1456. doi: 10.1007/s00259-005-1922-9. [DOI] [PubMed] [Google Scholar]
  • 24.Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 2007;6:926–932. doi: 10.1016/S1474-4422(07)70245-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Huang C, Tang C, Feigin A, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–1846. doi: 10.1093/brain/awm086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Elm JJ, Goetz CG, Ravina B, et al. A responsive outcome for Parkinson’s disease neuroprotection futility studies. Ann Neurol. 2005;57:197–203. doi: 10.1002/ana.20361. [DOI] [PubMed] [Google Scholar]
  • 27.Peterson AL, Nutt JG. Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics. 2008;5:270–280. doi: 10.1016/j.nurt.2008.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Spencer JP, Jenner A, Butler J, et al. Evaluation of the prooxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radic Res. 1996;24:95–105. doi: 10.3109/10715769609088005. [DOI] [PubMed] [Google Scholar]
  • 29.Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S26–S38. doi: 10.1002/ana.10483. [DOI] [PubMed] [Google Scholar]
  • 30.Heikkila RE, Terleckyj I, Sieber BA. Monoamine oxidase and the bioactivation of MPTP and related neurotoxins: relevance to DATATOP. J Neural Transm Suppl. 1990;32:217–227. doi: 10.1007/978-3-7091-9113-2_32. [DOI] [PubMed] [Google Scholar]
  • 31.Giladi N, McDermott MP, Fahn S, Parkinson Study Group et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology. 2001;56:1712–1721. doi: 10.1212/wnl.56.12.1712. [DOI] [PubMed] [Google Scholar]
  • 32.Djaldetti R, Ziv I, Melamed E. The effect of deprenyl washout in patients with long-standing Parkinson’s disease. J Neural Transm. 2002;109:797–803. doi: 10.1007/s007020200066. [DOI] [PubMed] [Google Scholar]
  • 33.LeWitt PA, Oakes D, Cui L, Parkinson Study Group The need for levodopa as an endpoint of Parkinson’s disease progression in a clinical trial of selegiline and α-tocopherol. Mov Disord. 1997;12:183–189. doi: 10.1002/mds.870120208. [DOI] [PubMed] [Google Scholar]
  • 34.Ward CD. Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry. 1994;57:217–220. doi: 10.1136/jnnp.57.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Mäki-Ikola O, Heinonen E. Study design problems of DATATOP study analysis. Ann Neurol. 1986;40:946–948. doi: 10.1002/ana.410400624. [DOI] [PubMed] [Google Scholar]
  • 36.Tetrud JW, Langsten JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science. 1989;245:519–522. doi: 10.1126/science.2502843. [DOI] [PubMed] [Google Scholar]
  • 37.Myllylä VV, Sotaniemi KA, Vuorinen JA, Heinonen EH. Selegiline as a primary treatment of Parkinson’s disease. Acta Neurol Scand Suppl. 1991;136:70–72. doi: 10.1111/j.1600-0404.1991.tb05023.x. [DOI] [PubMed] [Google Scholar]
  • 38.Pålhagen S, Heinonen EH, Hägglund J, et al. Swedish Parkinson Study Group. Selegiline delays the onset of disability in de novo parkinsonian patients. Neurology. 1998;51:520–525. doi: 10.1212/wnl.51.2.520. [DOI] [PubMed] [Google Scholar]
  • 39.Pålhagen S, Heinonen E, Hägglund J, et al. Selegiline slows the progression of the symptoms of Parkinson’s disease. Neurology. 2006;66:1200–1206. doi: 10.1212/01.wnl.0000204007.46190.54. [DOI] [PubMed] [Google Scholar]
  • 40.Larsen JP, Boas J, Erdal JE, The Norwegian-Danish Study Group Does selegiline modify the progression of early Parkinson’s disease? Results from a five-year study Eur J Neurol. 1999;6:539–547. doi: 10.1046/j.1468-1331.1999.650539.x. [DOI] [PubMed] [Google Scholar]
  • 41.Tatton W, Chalmers-Redman R, Tatton N. Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm. 2003;110:509–515. doi: 10.1007/s00702-002-0827-z. [DOI] [PubMed] [Google Scholar]
  • 42.Parkinson Study Group A controlled trial of lazabemide (Ro 19-6327) in levodopa-treated Parkinson’s disease. Arch Neurol. 1994;51:342–347. doi: 10.1001/archneur.1994.00540160036006. [DOI] [PubMed] [Google Scholar]
  • 43.LeWitt PA, Segel SA, Mistura KL, Schork MA. Symptomatic anti-parkinsonian effects of monoamine oxidase-B inhibition: comparison of selegiline and lazabemide. Clin Neuropharmacol. 1993;16:332–337. doi: 10.1097/00002826-199308000-00005. [DOI] [PubMed] [Google Scholar]
  • 44.Parkinson Study Group. Effect of lazabemide on the progression of imaging in early Parkinson disease. Ann Neurol. 1996;40:99–107. doi: 10.1002/ana.410400116. [DOI] [PubMed] [Google Scholar]
  • 45.Akao Y, Youdim MB, Davis BA, Naoi M, Rabey JM. Rasagiline mesylate, a new MAO B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. J Neurochem. 2001;78:727–735. [Google Scholar]
  • 46.Maruyama W, Akao Y, Carrillo MC, et al. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol. 2002;24:675–682. doi: 10.1016/s0892-0362(02)00221-0. [DOI] [PubMed] [Google Scholar]
  • 47.Mandel S, Grunblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs. 2003;17:729–762. doi: 10.2165/00023210-200317100-00004. [DOI] [PubMed] [Google Scholar]
  • 48.Youdim MB, Amit T, Bar-Am O, Weinstock M, Yogev-Falach M. Amyloid processing and signal transduction properties of anti-Parkinson-anti-Alzheimer neuroprotective drugs rasagiline and TV3326. Ann N Y Acad Sci. 2003;993:378–386. doi: 10.1111/j.1749-6632.2003.tb07548.x. [DOI] [PubMed] [Google Scholar]
  • 49.Parkinson Study Group A controlled trial of rasagiline in early Parkinson’s disease: the TEMPO Study. Arch Neurol. 2002;59:1937–1943. doi: 10.1001/archneur.59.12.1937. [DOI] [PubMed] [Google Scholar]
  • 50.Carlile GW, Chalmers-Redman RME, Tatton NA, et al. Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric gluteraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol. 2000;57:2–12. [PubMed] [Google Scholar]
  • 51.Stocchi F, Vacca L, Grassini P, et al. Symptom relief in Parkinson disease by safinamide: biochemical and clinical evidence of efficacy beyond MAO-B inhibition. Neurology. 2006;67(Suppl 2):S24–S29. doi: 10.1212/wnl.67.7_suppl_2.s24. [DOI] [PubMed] [Google Scholar]
  • 52.Olanow CW, Schapira AH, LeWitt PA, et al. TCH346 as a neuroprotective drug in Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2006;5:1013–1020. doi: 10.1016/S1474-4422(06)70602-0. [DOI] [PubMed] [Google Scholar]
  • 53.Parkinson Study Group A randomized controlled trial comparing pramipexole with levodopa in early Parkinson’s disease: design and methods of the CALM-PD Study. Clin Neuropharmacol. 2000;23:34–44. doi: 10.1097/00002826-200001000-00007. [DOI] [PubMed] [Google Scholar]
  • 54.Parkinson Study Group Pramipexole vs. levodopa as initial treatment for Parkinson disease. JAMA. 2000;284:1931–1938. doi: 10.1001/jama.284.15.1931. [DOI] [PubMed] [Google Scholar]
  • 55.Parkinson Study Group Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002;287:1653–1661. doi: 10.1001/jama.287.13.1653. [DOI] [PubMed] [Google Scholar]
  • 56.Whone AL, Watts RL, Stoessl AJ, et al. REAL-PET Study Group. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol. 2003;54:93–101. doi: 10.1002/ana.10609. [DOI] [PubMed] [Google Scholar]
  • 57.Oertel WH, Wolters E, Sampaio C, et al. Pergolide versus levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET study. Mov Disord. 2006;21:343–353. doi: 10.1002/mds.20724. [DOI] [PubMed] [Google Scholar]
  • 58.Feiten DL, Felten SY, Fuller RW, et al. Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged Fischer-344 rats. Neurobiol Aging. 1992;13:339–351. doi: 10.1016/0197-4580(92)90048-3. [DOI] [PubMed] [Google Scholar]
  • 59.Feiger B, Teismann P, Mierau J. The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striatal application of 6-hydroxydopamine in rats: an in vivo microdialysis study. Brain Res. 2000;883:216–223. doi: 10.1016/s0006-8993(00)02929-2. [DOI] [PubMed] [Google Scholar]
  • 60.Le WD, Jankovic J. Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs Aging. 2001;18:389–396. doi: 10.2165/00002512-200118060-00001. [DOI] [PubMed] [Google Scholar]
  • 61.Hall ED, Andrus PK, Oostveen JA, et al. Neuroprotective effects of pramipexole against post-ischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Mov Disord. 1996;11(Suppl 1):191–191. doi: 10.1016/s0006-8993(96)00968-7. [DOI] [PubMed] [Google Scholar]
  • 62.Vu TQ, Ling ZD, Ma SY, et al. Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm. 2000;107:159–176. doi: 10.1007/s007020050014. [DOI] [PubMed] [Google Scholar]
  • 63.Sethi VH, Wu H, Oostveen JA. Neuroprotective effects of the dopamine agonists pramipexole and bromocriptine in 3-acetylpyridine-treated rats. Brain Res. 1997;754:181–186. doi: 10.1016/s0006-8993(97)00075-9. [DOI] [PubMed] [Google Scholar]
  • 64.Cassarino DS, Fall CP, Smith TS, Bennett JP. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem. 1998;71:295–301. doi: 10.1046/j.1471-4159.1998.71010295.x. [DOI] [PubMed] [Google Scholar]
  • 65.Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol. 1998;54:1046–1054. [PubMed] [Google Scholar]
  • 66.Zou L, Xu J, Jankovic J, He Y, Appel SH, Le W. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett. 2000;281:167–170. doi: 10.1016/s0304-3940(00)00853-3. [DOI] [PubMed] [Google Scholar]
  • 67.Le WD, Jankovic J, Xie W, Appel SH. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm. 2000;107:1165–1173. doi: 10.1007/s007020070030. [DOI] [PubMed] [Google Scholar]
  • 68.Carvey P, Pieri S, Ling Z. Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole. J Neural Transm. 1997;104:209–228. doi: 10.1007/BF01273182. [DOI] [PubMed] [Google Scholar]
  • 69.Ling ZD, Robie HC, Tong CW, Carvey PM. Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. J Pharmacol Exp Ther. 1999;289:202–210. [PubMed] [Google Scholar]
  • 70.Anderson DW, Neavin T, Smith JA, Schneider JS. Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res. 2001;905:44–53. doi: 10.1016/s0006-8993(01)02466-0. [DOI] [PubMed] [Google Scholar]
  • 71.Abramova NA, Cassarino DS, Khan SM, Painter TW, Bennett JP. Inhibition by R(+) or S(−) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res. 2002;67:494–500. doi: 10.1002/jnr.10127. [DOI] [PubMed] [Google Scholar]
  • 72.Takata K, Kitamura Y, Kakimura J, Kohno Y, Taniguchi T. Increase of bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole. Brain Res. 2000;872:236–241. doi: 10.1016/s0006-8993(00)02493-8. [DOI] [PubMed] [Google Scholar]
  • 73.Tanaka K, Miyazaki I, Fujita N, Haque ME, Asanuma M, Ogawa N. Molecular mechanism in activation of glutathione system by ropinirole, a selective dopamine D2 agonist. Neurochem Res. 2001;26:31–36. doi: 10.1023/a:1007672414239. [DOI] [PubMed] [Google Scholar]
  • 74.Brooks DJ, Frey KA, Marek KL, et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp Neurol. 2003;184(Suppl 1):S68–S79. doi: 10.1016/j.expneurol.2003.08.008. [DOI] [PubMed] [Google Scholar]
  • 75.Rakshi JS, Pavese N, Uema T, et al. A comparison of the progression of early Parkinson’s disease in patients started on ropinirole or L-dopa: an 18F-dopa PET study. J Neural Transm. 2002;109:1433–1443. doi: 10.1007/s00702-002-0753-0. [DOI] [PubMed] [Google Scholar]
  • 76.LeWitt P, Aizenman E, Newcomer T, Loeffler D, Parkinson Study Group The search for an endogenous neurotoxin in Parkinson’s disease: TOPA and TOPA-quinone. Mov Disord. 1994;9:482–482. [Google Scholar]
  • 77.Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. L-DOPA administration enhances 6-hydroxydopamine generation. Brain Res. 2005;1063:180–186. doi: 10.1016/j.brainres.2005.09.041. [DOI] [PubMed] [Google Scholar]
  • 78.Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord. 2004;19:997–1005. doi: 10.1002/mds.20243. [DOI] [PubMed] [Google Scholar]
  • 79.Camp DM, Loeffler DA, LeWitt PA. L-DOPA does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion. J Neurochem. 2000;74:1229–1240. doi: 10.1046/j.1471-4159.2000.741229.x. [DOI] [PubMed] [Google Scholar]
  • 80.Chan PL, Nutt JG, Holford NH. Levodopa slows progression of Parkinson’s disease: external validation by clinical trial simulation. Pharm Res. 2007;24:791–802. doi: 10.1007/s11095-006-9202-3. [DOI] [PubMed] [Google Scholar]
  • 81.Fahn S. A pilot trial of high-dose α-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol. 1992;32:S128–S132. doi: 10.1002/ana.410320722. [DOI] [PubMed] [Google Scholar]
  • 82.Canet-Avilés RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101:9103–9108. doi: 10.1073/pnas.0402959101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.The NINDS NET-PD Investigators A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology. 2007;68:20–28. doi: 10.1212/01.wnl.0000250355.28474.8e. [DOI] [PubMed] [Google Scholar]
  • 84.Cleren C, Yang L, Lorenzo B, et al. Therapeutic effects of Coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of parkinsonism. J Neurochem 2007 Dec 8 [Epub ahead of print]. [DOI] [PubMed]
  • 85.Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol. 1999;157:142–149. doi: 10.1006/exnr.1999.7049. [DOI] [PubMed] [Google Scholar]
  • 86.Constantinescu R, McDermott MP, Dicenzo R, et al. A randomized study of the bioavailability of different formulations of coenzyme Q10 (ubiquinone) J Clin Pharmacol. 2007;47:1580–1586. doi: 10.1177/0091270007307571. [DOI] [PubMed] [Google Scholar]
  • 87.Parkinson Study Group PRECEPT Investigators Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson’s disease. Neurology. 2007;69:1480–1490. doi: 10.1212/01.wnl.0000277648.63931.c0. [DOI] [PubMed] [Google Scholar]
  • 88.The NINDS NET-PD Investigators A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66:664–671. doi: 10.1212/01.wnl.0000201252.57661.e1. [DOI] [PubMed] [Google Scholar]
  • 89.Bender A, Koch W, Elstner M, et al. Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology. 2006;67:1262–1264. doi: 10.1212/01.wnl.0000238518.34389.12. [DOI] [PubMed] [Google Scholar]
  • 90.Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL. Recent clinical failures in Parkinson’s disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol. 2006;72:1197–1206. doi: 10.1016/j.bcp.2006.06.031. [DOI] [PubMed] [Google Scholar]
  • 91.Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2001;98:14669–14674. doi: 10.1073/pnas.251341998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22:1763–1771. doi: 10.1523/JNEUROSCI.22-05-01763.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res. 2001;909:187–193. doi: 10.1016/s0006-8993(01)02681-6. [DOI] [PubMed] [Google Scholar]
  • 94.Diguet E, Fernagut PO, Wei X, et al. Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci. 2004;19:3266–3276. doi: 10.1111/j.0953-816X.2004.03372.x. [DOI] [PubMed] [Google Scholar]
  • 95.Ishitani R, Kimura M, Sunaga K, Katsube N, Tanaka M, Chuang DM. An antisense oligonucleotide to glyceraldehyde-3-phosphate-dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther. 1996;278:447–454. [PubMed] [Google Scholar]
  • 96.Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM. Evidence that glyceraldehyde-3-phosphate-dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem. 1996;66:928–935. doi: 10.1046/j.1471-4159.1996.66030928.x. [DOI] [PubMed] [Google Scholar]
  • 97.Kragten E, Lalande I, Zimmermann K, et al. Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(−)-deprenyl. J Biol Chem. 1998;273:5821–5828. doi: 10.1074/jbc.273.10.5821. [DOI] [PubMed] [Google Scholar]
  • 98.Andringa G, Cools AR. The neuroprotective effects of CGP 3466B in the best in vivo model of Parkinson’s disease, the bilaterally MPTP-treated rhesus monkey. J Neural Transm Suppl. 2000;60:215–225. doi: 10.1007/978-3-7091-6301-6_14. [DOI] [PubMed] [Google Scholar]
  • 99.Maroney AC, Glicksman MA, Basma AN, et al. Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci. 1998;18:104–111. doi: 10.1523/JNEUROSCI.18-01-00104.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Parkinson Study Group The safety and tolerability of a mixed lineage kinase inhibitor (CEP-1347) in PD. Neurology. 2004;62:330–332. doi: 10.1212/01.wnl.0000103882.56507.20. [DOI] [PubMed] [Google Scholar]
  • 101.Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–622. doi: 10.1056/NEJM199403033300907. [DOI] [PubMed] [Google Scholar]
  • 102.Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–822. doi: 10.1126/science.1087753. [DOI] [PubMed] [Google Scholar]
  • 103.Rascol O, Olanow CW, Brooks D, et al. A 2-year multicenter placebo-controlled, double blind parallel group study of the effect of riluzole in Parkinson’s disease. Mov Disord. 2002;17(Suppl 5):39–39. [Google Scholar]
  • 104.Jankovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord. 2002;8:271–276. doi: 10.1016/s1353-8020(01)00040-2. [DOI] [PubMed] [Google Scholar]
  • 105.Vatassery GT, Fahn S, Kuskowski MA, Parkinson Study Group Alpha tocopherol in CSF of subjects taking high-dose vitamin E in the DATATOP study. Neurology. 1998;50:1900–1902. doi: 10.1212/wnl.50.6.1900. [DOI] [PubMed] [Google Scholar]
  • 106.Parkinson Study Group Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol. 1995;52:237–245. doi: 10.1001/archneur.1995.00540270025015. [DOI] [PubMed] [Google Scholar]
  • 107.Carlsson T, Björklund T, Kirik D. Restoration of the striatal dopamine synthesis for Parkinson’s disease: viral vector-mediated enzyme replacement strategy. Curr Gene Ther. 2007;7:109–120. doi: 10.2174/156652307780363125. [DOI] [PubMed] [Google Scholar]
  • 108.Herzog CD, Dass B, Holden JE, et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord. 2007;22:1124–1132. doi: 10.1002/mds.21503. [DOI] [PubMed] [Google Scholar]
  • 109.Gasmi M, Herzog CD, Brandon EP, et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol Ther. 2007;15:62–68. doi: 10.1038/sj.mt.6300010. [DOI] [PubMed] [Google Scholar]
  • 110.Xue YQ, Zhao LR, Guo WP, Duan WM. Intrastriatal administration of erythropoietin protects dopaminergic neurons and improves neurobehavioral outcome in a rat model of Parkinson’s disease. Neuroscience. 2007;146:1245–1258. doi: 10.1016/j.neuroscience.2007.02.004. [DOI] [PubMed] [Google Scholar]
  • 111.Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for α-synucleinopathy: a rat model of Parkinson’s disease. Hum Gene Ther. 2005;16:262–270. doi: 10.1089/hum.2005.16.262. [DOI] [PubMed] [Google Scholar]
  • 112.Mochizuki H. Gene therapy for Parkinson’s disease. Expert Rev Neurother. 2007;7:957–960. doi: 10.1586/14737175.7.8.957. [DOI] [PubMed] [Google Scholar]
  • 113.Ren Y, Liu W, Jiang H, Jiang Q, Feng J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem. 2005;280:34105–34112. doi: 10.1074/jbc.M503483200. [DOI] [PubMed] [Google Scholar]
  • 114.Hunter RL, Dragicevic N, Seifert K, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem. 2007;100:1375–1386. doi: 10.1111/j.1471-4159.2006.04327.x. [DOI] [PubMed] [Google Scholar]
  • 115.Chen H, Zhang SM, Hemán MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol. 2003;60:1059–1064. doi: 10.1001/archneur.60.8.1059. [DOI] [PubMed] [Google Scholar]
  • 116.Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101:9435–9440. doi: 10.1073/pnas.0400569101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Ikeda K, Kurokawa M, Aoyama S, Kuwana Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem. 2002;80:262–270. doi: 10.1046/j.0022-3042.2001.00694.x. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES