Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Apr;5(2):237–251. doi: 10.1016/j.nurt.2008.02.004

Therapeutic potentials of human embryonic stem cells in Parkinson’s disease

Mary B Newman 1,, Roy A E Bakay 1
PMCID: PMC5084166  PMID: 18394566

Summary

The loss of dopaminergic neurons of the substantia nigra is the pathological hallmark characteristic of Parkinson’s disease (PD). The strategy of replacing these degenerating neurons with other cells that produce dopamine has been the main approach in the cell transplantation field for PD research. The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural growth factors has advanced the transplantation field beyond dopamine-producing cells. The present review addresses recent advances in human embryonic stem cell experimentation in relation to treating PD, as well as cell transplantation techniques in conjunction with alternative therapeutics.

Key Words: Neurotrophic, microenvironment, cytokines, growth factors, chemokines, progenitor cells, precursor cells, neural stem cells, transplantation, central nervous system, injury, repair

References

  • 1.Newman MB, Freeman TB, Hart CD, Sanberg PR. Neural stem cells for cellular therapy in humans. In: Bottenstein JE, editor. Neural stem cells: development and transplantation. New York: Kluwer Academic; 2003. pp. 379–412. [Google Scholar]
  • 2.Ludwig CL, Weinberger DR, Bruno G, et al. Buspirone, Parkinson’s disease, and the locus ceruleus. Clin Neuropharmacol. 1986;9:373–378. doi: 10.1097/00002826-198608000-00004. [DOI] [PubMed] [Google Scholar]
  • 3.Chan-Palay V. Depression and dementia in Parkinson’s disease: catecholamine changes in the locus ceruleus, a basis for therapy. Adv Neurol. 1993;60:438–446. [PubMed] [Google Scholar]
  • 4.Chan-Palay V. Locus coeruleus and norepinephrine in Parkinson’s disease. Jpn J Psychiatry Neurol. 1991;45:519–521. doi: 10.1111/j.1440-1819.1991.tb02540.x. [DOI] [PubMed] [Google Scholar]
  • 5.Mavridis M, Degryse AD, Lategan AJ, Marien MR, Colpaert FC. Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience. 1991;41:507–523. doi: 10.1016/0306-4522(91)90345-o. [DOI] [PubMed] [Google Scholar]
  • 6.Sandyk R. Hypothalamic—locus coeruleus mechanisms in the pathophysiology of “on-off” in L-dopa treated Parkinson’s disease: a hypothesis. Int J Neurosci. 1989;47:303–308. doi: 10.3109/00207458908987444. [DOI] [PubMed] [Google Scholar]
  • 7.Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fomai F. The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev. 2000;24:655–668. doi: 10.1016/s0149-7634(00)00028-2. [DOI] [PubMed] [Google Scholar]
  • 8.Bertrand E, Lechowicz W, Szpak GM, Dymecki J. Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease. Folia Neuropathol. 1997;35:80–86. [PubMed] [Google Scholar]
  • 9.Hoogendijk WJ, Pool CW, Troost D, van Zwieten E, Swaab DF. Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain. 1995;118:131–143. doi: 10.1093/brain/118.1.131. [DOI] [PubMed] [Google Scholar]
  • 10.Zweig RM, Cardillo JE, Cohen M, Giere S, Hedreen JC. The locus ceruleus and dementia in Parkinson’s disease. Neurology. 1993;43:986–991. doi: 10.1212/wnl.43.5.986. [DOI] [PubMed] [Google Scholar]
  • 11.Menendez P, Bueno C, Wang L. Human embryonic stem cells: a journey beyond cell replacement therapies. Cytotherapy. 2006;8:530–541. doi: 10.1080/14653240601026654. [DOI] [PubMed] [Google Scholar]
  • 12.Bankiewicz KS, Leff SE, Nagy D, et al. Practical aspects of the development of ex vivo and in vivo gene therapy for Parkinson’s disease. Exp Neurol. 1997;144:147–156. doi: 10.1006/exnr.1996.6401. [DOI] [PubMed] [Google Scholar]
  • 13.Raymon HK, Thode S, Gage FH. Application of ex vivo gene therapy in the treatment of Parkinson’s disease. Exp Neurol. 1997;144:82–91. doi: 10.1006/exnr.1996.6392. [DOI] [PubMed] [Google Scholar]
  • 14.Mogi M, Nagatsu T. Neurotrophins and cytokines in Parkinson’s disease. Adv Neurol. 1999;80:135–139. [PubMed] [Google Scholar]
  • 15.Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–976. doi: 10.1038/sj.bjp.0707167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Collier TJ, Sortwell CE, Elsworth JD, et al. Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson’s disease. J Comp Neurol. 2002;442:320–330. doi: 10.1002/cne.10108. [DOI] [PubMed] [Google Scholar]
  • 17.Henderson JK, Draper JS, Baillie HS, et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells. 2002;20:329–337. doi: 10.1634/stemcells.20-4-329. [DOI] [PubMed] [Google Scholar]
  • 18.Brederlau A, Correia AS, Anisimov SV, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 2006;24:1433–1440. doi: 10.1634/stemcells.2005-0393. [DOI] [PubMed] [Google Scholar]
  • 19.Goldman SA, Roy NS, Beal MF, Cleren C. Large stem cell grafts could lead to erroneous interpretations of behavioral results? Nat Med. 2007;13:118–119. doi: 10.1038/nm0207-118b. [DOI] [PubMed] [Google Scholar]
  • 20.Redmond DE, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007;104:12175–12180. doi: 10.1073/pnas.0704091104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Redmond DE, Vinuela A, Kordower JH, Isacson O. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol Dis. 2008;29:103–116. doi: 10.1016/j.nbd.2007.08.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–719. doi: 10.1056/NEJM200103083441002. [DOI] [PubMed] [Google Scholar]
  • 23.Olanow CW, Brin MF. Surgical therapies for Parkinson’s disease: a physician’s perspective. Adv Neurol. 2001;86:421–433. [PubMed] [Google Scholar]
  • 24.Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–414. doi: 10.1002/ana.10720. [DOI] [PubMed] [Google Scholar]
  • 25.Kordower JH, Goetz CG, Freeman TB, Olanow CW. Dopaminergic transplants in patients with Parkinson’s disease: neuroanatomical correlates of clinical recovery. Exp Neurol. 1997;144:41–46. doi: 10.1006/exnr.1996.6386. [DOI] [PubMed] [Google Scholar]
  • 26.Freed CR, Breeze RE, Schneck SA. Transplantation of fetal mesencephalic tissue in Parkinson’s disease. N Engl J Med. 1995;333:730–731. doi: 10.1056/NEJM199509143331112. [DOI] [PubMed] [Google Scholar]
  • 27.Freeman TB, Willing A, Zigova T, Sanberg PR, Hauser RA. Neural transplantation in Parkinson’s disease. Adv Neurol. 2001;86:435–445. [PubMed] [Google Scholar]
  • 28.Björklund A, Dunnett SB, Brundin P, et al. Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol. 2003;2:437–445. doi: 10.1016/s1474-4422(03)00442-3. [DOI] [PubMed] [Google Scholar]
  • 29.Kordower JH, Freeman TB, Chen EY, et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord. 1998;13:383–393. doi: 10.1002/mds.870130303. [DOI] [PubMed] [Google Scholar]
  • 30.Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci. 1996;19:102–109. doi: 10.1016/s0166-2236(96)80038-5. [DOI] [PubMed] [Google Scholar]
  • 31.Lajtha LG. Bone marrow: the seedbed of blood. In: Wintrobe MM, editor. Blood, pure and eloquent. New York: McGraw-Hill; 1980. pp. 80–94. [Google Scholar]
  • 32.Lajtha LG. Strategic reserves. Blood Cells. 1980;6:381–389. [PubMed] [Google Scholar]
  • 33.Lajtha LG. Haemopoietic stem cells: concept and definitions. Blood Cells. 1979;5:447–455. [PubMed] [Google Scholar]
  • 34.Lajtha LG. Stem cell concepts. Nouv Rev Fr Hematol. 1979;21:59–65. [PubMed] [Google Scholar]
  • 35.Schofield R, Lajtha LG. Determination of the probability of self-renewal in haemopoietic stem cells: a puzzle. Blood Cells. 1983;9:467–483. [PubMed] [Google Scholar]
  • 36.Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev. 2001;122:713–734. doi: 10.1016/s0047-6374(01)00224-x. [DOI] [PubMed] [Google Scholar]
  • 37.Gage FH. Mammalian neural stem cells. Science. 2000;287:1433–1438. doi: 10.1126/science.287.5457.1433. [DOI] [PubMed] [Google Scholar]
  • 38.Shihabuddin LS, Palmer TD, Gage FH. The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease. Mol Med Today. 1999;5:474–480. doi: 10.1016/s1357-4310(99)01596-8. [DOI] [PubMed] [Google Scholar]
  • 39.Shihabuddin LS, Ray J, Gage FH. Stem cell technology for basic science and clinical applications. Arch Neurol. 1999;56:29–32. doi: 10.1001/archneur.56.1.29. [DOI] [PubMed] [Google Scholar]
  • 40.Rao SG. Stem cells and their therapeutic potential. Indian J Exp Biol. 2001;39:1205–1206. [PubMed] [Google Scholar]
  • 41.Seaberg RM, van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003;26:125–131. doi: 10.1016/S0166-2236(03)00031-6. [DOI] [PubMed] [Google Scholar]
  • 42.Marshak DR, Gardner RL, Gottlieb D, editors. Stem cell biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001. [Google Scholar]
  • 43.Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105:829–841. doi: 10.1016/s0092-8674(01)00409-3. [DOI] [PubMed] [Google Scholar]
  • 44.Rao MS. Stem cells and CNS development. Totowa, NJ: Humana Press; 2001. [Google Scholar]
  • 45.National Research Council (U.S.) Committee on the Biological and Biomedical Applications of Stem Cell Research. Institute of Medicine (U.S.) Board on Neuroscience and Behavioral Health . Stem cells and the future of regenerative medicine. Washington, DC: National Academy Press; 2002. [Google Scholar]
  • 46.Gage FH. Stem cells of the central nervous system. Curr Opin Neurobiol. 1998;8:671–676. doi: 10.1016/s0959-4388(98)80098-6. [DOI] [PubMed] [Google Scholar]
  • 47.Broxmeyer HE. Primitive hematopoietic stem and progenitor cells in human umbilical cord blood: an alternative source of transplantable cells. Cancer Treat Res. 1996;84:139–148. doi: 10.1007/978-1-4613-1261-1_7. [DOI] [PubMed] [Google Scholar]
  • 48.Landström U, Løvtrup S. Fate maps and cell differentiation in the amphibian embryo: an experimental study. J Embryol Exp Morphol. 1979;54:113–130. [PubMed] [Google Scholar]
  • 49.Clarke JD, Tickle C. Fate maps old and new. Nat Cell Biol. 1999;1:E103–E109. doi: 10.1038/12105. [DOI] [PubMed] [Google Scholar]
  • 50.Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci. 2005;46:4200–4208. doi: 10.1167/iovs.05-0691. [DOI] [PubMed] [Google Scholar]
  • 51.Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255:197–200. doi: 10.1038/255197a0. [DOI] [PubMed] [Google Scholar]
  • 52.Potten CS, editor. Stem cells: their identification and characterisation. New York: Churchill Livingstone; 1983. [Google Scholar]
  • 53.Carpenter MK, Rosler E, Rao MS. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells. 2003;5:79–88. doi: 10.1089/153623003321512193. [DOI] [PubMed] [Google Scholar]
  • 54.Newman MB, Davis CD, Borlongan CV, Emerich D, Sanberg PR. Transplantation of human umbilical cord blood cells in the repair of CNS diseases. Expert Opin Biol Ther. 2004;4:121–130. doi: 10.1517/14712598.4.2.121. [DOI] [PubMed] [Google Scholar]
  • 55.Meyer CH, Detta A, Kudoh C. Hitchcock’s experimental series of foetal implants for Parkinson’s disease: co-grafting ventral mesencephalon and striatum. Acta Neurochir Suppl. 1995;64:1–4. doi: 10.1007/978-3-7091-9419-5_1. [DOI] [PubMed] [Google Scholar]
  • 56.Hoffer B, Olson L. Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques. J Neural Transm Suppl. 1997;49:1–10. doi: 10.1007/978-3-7091-6844-8_1. [DOI] [PubMed] [Google Scholar]
  • 57.Yurek DM, Fletcher-Turner A. GDNF partially protects grafted fetal dopaminergic neurons against 6-hydroxydopamine neurotoxicity. Brain Res. 1999;845:21–27. doi: 10.1016/s0006-8993(99)01921-6. [DOI] [PubMed] [Google Scholar]
  • 58.Mendez I, Dagher A, Hong M, et al. Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line—derived neurotrophic factor in patients with Parkinson’s disease: report of two cases and technical considerations. J Neurosurg. 2000;92:863–869. doi: 10.3171/jns.2000.92.5.0863. [DOI] [PubMed] [Google Scholar]
  • 59.Willing AE, Othberg AI, Saporta S, et al. Sertoli cells enhance the survival of co-transplanted dopamine neurons. Brain Res. 1999;822:246–250. doi: 10.1016/s0006-8993(99)01128-2. [DOI] [PubMed] [Google Scholar]
  • 60.Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101:18117–18122. doi: 10.1073/pnas.0408258102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Thored P, Arvidsson A, Cacci E, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–747. doi: 10.1634/stemcells.2005-0281. [DOI] [PubMed] [Google Scholar]
  • 62.Ji L, Allen-Hoffmann BL, de Pablo JJ, Palecek SP. Generation and differentiation of human embryonic stem cell-derived keratinocyte precursors. Tissue Eng. 2006;12:665–679. doi: 10.1089/ten.2006.12.665. [DOI] [PubMed] [Google Scholar]
  • 63.Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol. 2002;2:859–71. doi: 10.1038/nri934. [DOI] [PubMed] [Google Scholar]
  • 64.Vanikar AV, Mishra VV, Firoz A, et al. Successful generation of donor specific hematopoietic stem cell lines from co-cultured bone marrow with human embryonic stem cell line: a new methodology. Transplant Proc. 2007;39:658–661. doi: 10.1016/j.transproceed.2007.01.048. [DOI] [PubMed] [Google Scholar]
  • 65.Behrstock S, Svendsen CN. Combining growth factors, stem cells, and gene therapy for the aging brain. Ann N Y Acad Sci. 2004;1019:5–14. doi: 10.1196/annals.1297.002. [DOI] [PubMed] [Google Scholar]
  • 66.Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–7930. doi: 10.1073/pnas.1131955100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Shan X, Chi L, Bishop M, et al. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-like mice. Stem Cells. 2006;24:1280–1287. doi: 10.1634/stemcells.2005-0487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Cai J, Chen J, Liu Y, et al. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells. 2006;24:516–530. doi: 10.1634/stemcells.2005-0143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci U S A. 2002;99:1755–1757. doi: 10.1073/pnas.062039699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13:585–597. doi: 10.1089/scd.2004.13.585. [DOI] [PubMed] [Google Scholar]
  • 71.Smythe GM, Grounds MD. Exposure to tissue culture conditions can adversely affect myoblast behavior in vivo in whole muscle grafts: implications for myoblast transfer therapy. Cell Transplant. 2000;9:379–393. doi: 10.1177/096368970000900309. [DOI] [PubMed] [Google Scholar]
  • 72.Smythe GM, Hodgetts SI, Grounds MD. Immunobiology and the future of myoblast transfer therapy. Mol Ther. 2000;1:304–313. doi: 10.1006/mthe.2000.0049. [DOI] [PubMed] [Google Scholar]
  • 73.Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg. 2001;122:699–705. doi: 10.1067/mtc.2001.116317. [DOI] [PubMed] [Google Scholar]
  • 74.Bardin N, Francès V, Lesaule G, Horschowski N, George F, Sampol J. Identification of the S-Endo 1 endothelial-associated antigen. Biochem Biophys Res Commun. 1996;218:210–216. doi: 10.1006/bbrc.1996.0037. [DOI] [PubMed] [Google Scholar]
  • 75.Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71. doi: 10.1146/annurev.cb.11.110195.000343. [DOI] [PubMed] [Google Scholar]
  • 76.Ludwig TE, Bergendahl V, Levenstein ME, et al. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:637–646. doi: 10.1038/nmeth902. [DOI] [PubMed] [Google Scholar]
  • 77.Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–187. doi: 10.1038/nbt1177. [DOI] [PubMed] [Google Scholar]
  • 78.Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. [DOI] [PubMed] [Google Scholar]
  • 79.Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404. doi: 10.1038/74447. [DOI] [PubMed] [Google Scholar]
  • 80.Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development. 2004;131:5515–5525. doi: 10.1242/dev.01451. [DOI] [PubMed] [Google Scholar]
  • 81.Pera MF, Filipczyk AA, Hawes SM, Laslett AL. Isolation, characterization, and differentiation of human embryonic stem cells. Methods Enzymol. 2003;365:429–446. doi: 10.1016/s0076-6879(03)65030-5. [DOI] [PubMed] [Google Scholar]
  • 82.Gerami-Naini B, Dovzhenko OV, Duming M, Wegner FH, Thomson JA, Golos TG. Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology. 2004;145:1517–1524. doi: 10.1210/en.2003-1241. [DOI] [PubMed] [Google Scholar]
  • 83.Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20:1261–1264. doi: 10.1038/nbt761. [DOI] [PubMed] [Google Scholar]
  • 84.Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells. 2004;22:225–235. doi: 10.1634/stemcells.22-2-225. [DOI] [PubMed] [Google Scholar]
  • 85.Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ. High-efficiency RNA interference in human embryonic stem cells. Stem Cells. 2005;23:299–305. doi: 10.1634/stemcells.2004-0252. [DOI] [PubMed] [Google Scholar]
  • 86.Chen HF, Kuo HC, Chien CL, et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod. 2007;22:567–577. doi: 10.1093/humrep/del412. [DOI] [PubMed] [Google Scholar]
  • 87.Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng. 2005;91:688–698. doi: 10.1002/bit.20536. [DOI] [PubMed] [Google Scholar]
  • 88.Stojkovic M, Lako M, Stojkovic P, et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells. 2004;22:790–797. doi: 10.1634/stemcells.22-5-790. [DOI] [PubMed] [Google Scholar]
  • 89.Kannagi R, Cochran NA, Ishigami F, et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globoseries ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983;2:2355–2361. doi: 10.1002/j.1460-2075.1983.tb01746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Fenderson BA, De Miguel MP, Pyle AD, Donovan PJ. Staining embryonic stem cells using monoclonal antibodies to stage-specific embryonic antigens. Methods Mol Biol. 2006;325:207–224. doi: 10.1385/1-59745-005-7:207. [DOI] [PubMed] [Google Scholar]
  • 91.Ohmori K, Takada A, Yoneda T, et al. Differentiation-dependent expression of sialyl stage-specific embryonic antigen-1 and I-antigens on human lymphoid cells and its implications for carbohydrate-mediated adhesion to vascular endothelium. Blood. 1993;81:101–111. [PubMed] [Google Scholar]
  • 92.Yazawa T, Ogata T, Kamma H, Shibagaki T, Iijima T, Horiguchi H. Pulmonary blastoma with a topographic transition from blastic to more differentiated areas: an immunohistochemical assessment of its embryonic nature using stage-specific embryonic antigens. Virchows Arch A Pathol Anat Histopathol. 1991;419:513–518. doi: 10.1007/BF01650681. [DOI] [PubMed] [Google Scholar]
  • 93.Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002;200:249–258. doi: 10.1046/j.1469-7580.2002.00030.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Zhao M, Ren C, Yang H, et al. Transcriptional profiling of human embryonic stem cells and embryoid bodies identifies HESRG, a novel stem cell gene. Biochem Biophys Res Commun. 2007;362:916–922. doi: 10.1016/j.bbrc.2007.08.081. [DOI] [PubMed] [Google Scholar]
  • 95.Rosler ES, Fisk GJ, Ares X, et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn. 2004;229:259–274. doi: 10.1002/dvdy.10430. [DOI] [PubMed] [Google Scholar]
  • 96.Pruszak J, Sonntag KC, Aung MH, Sanchez-Pemaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells. 2007;25:2257–2268. doi: 10.1634/stemcells.2006-0744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Fukuda H, Takahashi J, Watanabe K, et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells. 2006;24:763–771. doi: 10.1634/stemcells.2005-0137. [DOI] [PubMed] [Google Scholar]
  • 98.Marzesco AM, Janich P, Wilsch-Brauninger M, et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci. 2005;118:2849–2858. doi: 10.1242/jcs.02439. [DOI] [PubMed] [Google Scholar]
  • 99.Fox N, Damjanov I, Martinez-Hernandez A, Knowles BB, Solter D. Immunohistochemical localization of the early embryonic antigen (SSEA-1) in postimplantation mouse embryos and fetal and adult tissues. Dev Biol. 1981;83:391–398. doi: 10.1016/0012-1606(81)90487-5. [DOI] [PubMed] [Google Scholar]
  • 100.Cardoso AA, Li ML, Batard P, et al. Human umbilical cord blood CD34+ cell purification with high yield of early progenitors. J Hematother. 1993;2:275–279. doi: 10.1089/scd.1.1993.2.275. [DOI] [PubMed] [Google Scholar]
  • 101.Cardoso AA, Li ML, Batard P, et al. Release from quiescence of CD34+ CD38− human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci U S A. 1993;90:8707–8711. doi: 10.1073/pnas.90.18.8707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Healy L, May G, Gale K, et al. The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proc Natl Acad Sci U S A. 1995;92:12240–12244. doi: 10.1073/pnas.92.26.12240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Lu L, Xiao M, Shen RN, Grigsby S, Broxmeyer HE. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood. 1993;81:41–48. [PubMed] [Google Scholar]
  • 104.Broxmeyer HE, Cooper S, Hague N, et al. Human chemokines: enhancement of specific activity and effects in vitro on normal and leukemic progenitors and a factor-dependent cell line and in vivo in mice. Ann Hematol. 1995;71:235–246. doi: 10.1007/BF01744373. [DOI] [PubMed] [Google Scholar]
  • 105.Broxmeyer HE. Questions to be answered regarding umbilical cord blood hematopoietic stem and progenitor cells and their use in-transplantation. Transfusion. 1995;35:694–702. doi: 10.1046/j.1537-2995.1995.35895357903.x. [DOI] [PubMed] [Google Scholar]
  • 106.Broxmeyer HE. Cord blood as an alternative source for stem and progenitor cell transplantation. Curr Opin Pediatr. 1995;7:47–55. doi: 10.1097/00008480-199502000-00010. [DOI] [PubMed] [Google Scholar]
  • 107.Traycoff CM, Abboud MR, Laver J, Clapp DW, Hoffman R, Srour EF. Ex vivo expansion of CD34+ cells from purified adult human bone marrow and umbilical cord blood hematopoietic progenitor cells. Prog Clin Biol Res. 1994;389:385–391. [PubMed] [Google Scholar]
  • 108.Traycoff CM, Abboud MR, Laver J, Clapp DW, Srour EF. Rapid exit from G0/G1 phases of cell cycle in response to stem cell factor confers on umbilical cord blood CD34+ cells an enhanced ex vivo expansion potential. Exp Hematol. 1994;22:1264–1272. [PubMed] [Google Scholar]
  • 109.Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444:761–765. doi: 10.1038/nature05349. [DOI] [PubMed] [Google Scholar]
  • 110.Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90:5013–5021. [PubMed] [Google Scholar]
  • 111.Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90:5002–5112. [PubMed] [Google Scholar]
  • 112.Pötgens AJ, Bolte M, Huppertz B, Kaufmann P, Frank HG. Human trophoblast contains an intracellular protein reactive with an antibody against CD133: a novel marker for trophoblast. Placenta. 2001;22:639–645. doi: 10.1053/plac.2001.0701. [DOI] [PubMed] [Google Scholar]
  • 113.Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000;97:14720–14725. doi: 10.1073/pnas.97.26.14720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70:837–845. doi: 10.1095/biolreprod.103.021147. [DOI] [PubMed] [Google Scholar]
  • 115.Amit M, Winkler ME, Menke S, et al. No evidence for infection of human embryonic stem cells by feeder cell-derived murine leukemia viruses. Stem Cells. 2005;23:761–771. doi: 10.1634/stemcells.2004-0046. [DOI] [PubMed] [Google Scholar]
  • 116.Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol. 2001;11:514–518. doi: 10.1016/s0960-9822(01)00144-0. [DOI] [PubMed] [Google Scholar]
  • 117.Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–974. doi: 10.1038/nbt1001-971. [DOI] [PubMed] [Google Scholar]
  • 118.Poltavtseva RA, Marey MV, Aleksandrova MA, Revishchin AV, Korochkin LI, Sukhikh GT. Evaluation of progenitor cell cultures from human embryos for neurotransplantation. Brain Res Dev Brain Res. 2002;134:149–154. doi: 10.1016/s0165-3806(02)00274-2. [DOI] [PubMed] [Google Scholar]
  • 119.Shih CC, Weng Y, Mamelak A, LeBon T, Hu MC, Forman SJ. Identification of a candidate human neurohematopoietic stem-cell population. Blood. 2001;98:2412–2422. doi: 10.1182/blood.v98.8.2412. [DOI] [PubMed] [Google Scholar]
  • 120.Hwang WS, Roh SI, Lee BC, et al. Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science. 2005;308:1777–1783. doi: 10.1126/science.1112286. [DOI] [PubMed] [Google Scholar]
  • 121.Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19:1134–1140. doi: 10.1038/nbt1201-1134. [DOI] [PubMed] [Google Scholar]
  • 122.Pleasure SJ, Page C, Lee VM. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci. 1992;12:1802–1815. doi: 10.1523/JNEUROSCI.12-05-01802.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Zhang SC, Wemig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19:1129–1133. doi: 10.1038/nbt1201-1129. [DOI] [PubMed] [Google Scholar]
  • 124.Zhou JM, Chu JX, Chen XJ. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro. Cell Biol Int. 2008;32:80–85. doi: 10.1016/j.cellbi.2007.08.015. [DOI] [PubMed] [Google Scholar]
  • 125.Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron. 2001;30:65–78. doi: 10.1016/s0896-6273(01)00263-x. [DOI] [PubMed] [Google Scholar]
  • 126.Gritti A, Frölichsthal-Schoeller P, Galli R, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci. 1999;19:3287–3297. doi: 10.1523/JNEUROSCI.19-09-03287.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Eaton MJ, Whittemore SR. Automne BDNF secretion enhances the survival and serotonergic differentiation of raphe neuronal precursor cells grafted into the adult rat CNS. Exp Neurol. 1996;140:105–114. doi: 10.1006/exnr.1996.0121. [DOI] [PubMed] [Google Scholar]
  • 128.Joannides AJ, Fiore-Hériché C, Battersby AA, et al. A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells. 2007;25:731–737. doi: 10.1634/stemcells.2006-0562. [DOI] [PubMed] [Google Scholar]
  • 129.Lu J, Hou R, Booth CJ, Yang SH, Snyder M. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:5688–5693. doi: 10.1073/pnas.0601383103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001;172:383–397. doi: 10.1006/exnr.2001.7832. [DOI] [PubMed] [Google Scholar]
  • 131.Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289:1754–1757. doi: 10.1126/science.289.5485.1754. [DOI] [PubMed] [Google Scholar]
  • 132.Ogawa M. Changing phenotypes of hematopoietic stem cells. Exp Hematol. 2002;30:3–6. doi: 10.1016/s0301-472x(01)00770-6. [DOI] [PubMed] [Google Scholar]
  • 133.Snyder EY, Macklis JD. Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin Neurosci. 1995;3:310–316. [PubMed] [Google Scholar]
  • 134.Mueller FJ, Serobyan N, Schraufstatter IU, et al. Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cells. 2006;24:2367–2372. doi: 10.1634/stemcells.2005-0568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Takeuchi H, Natsume A, Wakabayashi T, et al. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett. 2007;426:69–74. doi: 10.1016/j.neulet.2007.08.048. [DOI] [PubMed] [Google Scholar]
  • 136.Nagatsu T, Sawada M. Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol. 2006;26:781–802. doi: 10.1007/s10571-006-9061-9. [DOI] [PubMed] [Google Scholar]
  • 137.Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl 2000;(58):143–151. [PubMed]
  • 138.Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 2000;(60);277–290. [DOI] [PubMed]
  • 139.Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 2006;(70);373–381. [DOI] [PubMed]
  • 140.Imamura K, Hishikawa N, Sawada M, et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106:518–526. doi: 10.1007/s00401-003-0766-2. [DOI] [PubMed] [Google Scholar]
  • 141.Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Roc Natl Acad Sci U S A. 2002;99:9864–9869. doi: 10.1073/pnas.142298299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Grinnemo KH, Sylven C, Hovatta O, Dellgren G, Corbascio M. Immunogenicity of human embryonic stem cells. Cell Tissue Res. 2008;331:67–78. doi: 10.1007/s00441-007-0486-3. [DOI] [PubMed] [Google Scholar]
  • 143.Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A, et al. Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online. 2006;13:712–724. doi: 10.1016/s1472-6483(10)60663-3. [DOI] [PubMed] [Google Scholar]
  • 144.Drukker M, Katchman H, Katz G, et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells. 2006;24:221–229. doi: 10.1634/stemcells.2005-0188. [DOI] [PubMed] [Google Scholar]
  • 145.Li L, Baroja ML, Majumdar A, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004;22:448–456. doi: 10.1634/stemcells.22-4-448. [DOI] [PubMed] [Google Scholar]
  • 146.Bakay RA, Boyer KL, Freed CR, Ansari AA. Immunological responses to injury and grafting in the central nervous system of nonhuman primates. Cell Transplant. 1998;7:109–120. doi: 10.1177/096368979800700206. [DOI] [PubMed] [Google Scholar]
  • 147.Rao BM, Zandstra PW. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol. 2005;16:568–576. doi: 10.1016/j.copbio.2005.08.001. [DOI] [PubMed] [Google Scholar]
  • 148.Ponsaerts P, van Tendeloo VF, Jorens PG, Bememan ZN, van Bockstaele DR. Current challenges in human embryonic stem cell research: directed differentiation and transplantation tolerance. J Biol Regul Homeost Agents. 2004;18:347–351. [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES