Summary
Spheramine (Bayer Schering Pharma AG, Berlin, Germany) is currently being tested as a new approach for the treatment of Parkinson’s disease (PD). It consists of an active component of cultured human retinal pigment epithelial (hRPE) cells, attached to an excipient part of crosslinked porcine gelatin microcarrriers. Spheramine is administered by stereotactic implantation into the striatum of PD patients and the use of immunosuppression is not required. Current pharmacologic therapies of PD are oriented to the administration of dopaminergic medications. Human RPE cells produce levodopa, and this constitutes the rationale to use Spheramine for the treatment of PD. The preclinical development of Spheramine included extensive biologic, pharmacologic, and toxicologie studies in vitro and in animal models of PD. The first clinical trial in humans evaluated the safety and efficacy of Spheramine implanted in the postcommissural putamen contralateral to the most affected side in six patients with advanced PD. This open-label study demonstrated good tolerability and showed sustained motor clinical improvement. A phase II double-blind, randomized, multicenter, placebo-controlled (sham surgery) study is underway to evaluate safety, tolerability, and efficacy of Spheramine implanted bilaterally into the postcommissural putamen of patients with advanced PD. Spheramine represents a treatment approach with the potential of supplying a more continuous delivery of levodopa to the striatum in advanced PD than can be achieved with oral therapy alone.
Key Words: Parkinson’s disease, retinal pigment epithelial cells, neurotherapeutics, neurodegeneration, cellular therapies, cell transplantation
References
- 1.Wainer BH, Stover NP. Parkinson’s disease: neuropathology. In: Watts RL, Koller WC, editors. Movement disorders: neurologic principles and practice. 2nd ed. New York: McGraw-Hill; 2004. pp. 327–336. [Google Scholar]
- 2.Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9. [DOI] [PubMed] [Google Scholar]
- 3.Rajput AH. Clinical features and natural history of Parkinson’s disease (special consideration of aging) In: Calne DB, editor. Neurodegenerative diseases. Philadelphia: W.B. Saunders; 1994. pp. 555–572. [Google Scholar]
- 4.Poewe W, Granata R, Geser F. Movement disorders: neurologic principles and practice. 2nd ed. New York: McGraw-Hill; 2004. Pharmacologic treatment of Parkinson’s disease; pp. 247–271. [Google Scholar]
- 5.Lang AE, Lozano AM, Montgomery E, Duff J, Tasker R, Hutchinson W. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med. 1997;337:1036–1042. doi: 10.1056/NEJM199710093371503. [DOI] [PubMed] [Google Scholar]
- 6.Kumar R, Lozano AM, Kim YJ, et al. Double-blind evaluation of subthalamic nucleus deep brain stimulator in advanced Parkinson’s disease. Neurology. 1998;51:850–855. doi: 10.1212/wnl.51.3.850. [DOI] [PubMed] [Google Scholar]
- 7.The Deep Brain Stimulation for Parkinson’s Disease Study Group Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345:956–963. doi: 10.1056/NEJMoa000827. [DOI] [PubMed] [Google Scholar]
- 8.Chase TN, Juncos J, Serrati C, Fabbrini G, Bruno G. Fluctuation in response to chronic levodopa therapy: pathogenetic and therapeutic considerations. Adv Neurol. 1987;45:477–480. [PubMed] [Google Scholar]
- 9.Mouradian MM, Juncos JL, Fabbrini G, Schlegel J, Bartko JJ, Chase TN. Motor fluctuations in Parkinson’s disease: central pathophysiologic mechanism, Part II. Ann Neurol. 1988;24:372–378. doi: 10.1002/ana.410240304. [DOI] [PubMed] [Google Scholar]
- 10.Chase TN. The significance of continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Drugs. 1998;55(Suppl 1):1–9. doi: 10.2165/00003495-199855001-00001. [DOI] [PubMed] [Google Scholar]
- 11.Freeman TB, Olanow CW, Hauser RA, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol. 1995;38:379–388. doi: 10.1002/ana.410380307. [DOI] [PubMed] [Google Scholar]
- 12.Watts RL, Subramanian T, Freeman A, et al. Effects of stereotaxic intrastriatal cografts of autologous adrenal medulla and peripheral nerve in Parkinson’s disease: two-year follow-up study. Exp Neurol. 1997;147:510–517. doi: 10.1006/exnr.1997.6626. [DOI] [PubMed] [Google Scholar]
- 13.Freeman TB, Widner H. Cell transplantation for neurological disorders: towards reconstruction of the human central nervous system. Totowa, NJ: Humana Press; 1998. [Google Scholar]
- 14.Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of the nigrostriatal dopamine system. Science. 1979;204:643–647. doi: 10.1126/science.571147. [DOI] [PubMed] [Google Scholar]
- 15.Fahn S. Double-blind controlled trial of embryonic dopaminergic tissue transplants in advanced Parkinson’s disease. Mov Disord. 2000;15:M114–M114. [Google Scholar]
- 16.Watts RL, Freeman TB, Hauser RA, et al. A double-blind, randomized, controlled, multicenter clinical trial of the safety and efficacy of stereotaxic intrastriatal implantation of fetal porcine ventral mesencephalic tissue (Neurocell-PD™) versus imitation surgery in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2001;7(Suppl 1):S87–S87. [Google Scholar]
- 17.Clarkson ED. Fetal tissue transplantation for patients with Parkinson’s disease: a database of published clinical results. Drugs Aging. 2001;18:773–785. doi: 10.2165/00002512-200118100-00006. [DOI] [PubMed] [Google Scholar]
- 18.Hagell P, Piccini P, Björklund A, et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci. 2002;5:627–628. doi: 10.1038/nn863. [DOI] [PubMed] [Google Scholar]
- 19.Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2004;54:403–414. doi: 10.1002/ana.10720. [DOI] [PubMed] [Google Scholar]
- 20.Kirik D, Georgievska B, Björklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci. 2004;7:105–110. doi: 10.1038/nn1175. [DOI] [PubMed] [Google Scholar]
- 21.Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 2005;102:216–222. doi: 10.3171/jns.2005.102.2.0216. [DOI] [PubMed] [Google Scholar]
- 22.Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177:555–560. doi: 10.1016/0006-8993(79)90472-4. [DOI] [PubMed] [Google Scholar]
- 23.Kordower J, Freeman TB, Snow BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med. 1995;332:1118–1124. doi: 10.1056/NEJM199504273321702. [DOI] [PubMed] [Google Scholar]
- 24.Kordower JH, Rosenstein JM, Collier TJ, et al. Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol. 1996;24:203–230. doi: 10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- 25.Subramanian T. Cell transplantation for the treatment of Parkinson’s disease. Semin Neurol. 2001;21:103–115. doi: 10.1055/s-2001-13125. [DOI] [PubMed] [Google Scholar]
- 26.Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–719. doi: 10.1056/NEJM200103083441002. [DOI] [PubMed] [Google Scholar]
- 27.Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson’s disease. Nat Med. 2003;9:589–595. doi: 10.1038/nm850. [DOI] [PubMed] [Google Scholar]
- 28.Burnside B, Bost-Usinger L. The retinal pigment epithelial cytoskeleton. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998. pp. 41–67. [Google Scholar]
- 29.Schraermeyer U, Heimann K. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res. 1999;12:219–236. doi: 10.1111/j.1600-0749.1999.tb00755.x. [DOI] [PubMed] [Google Scholar]
- 30.Hageman GS, Kuehn MH. Biology of the interphotoreceptor matrix—retinal pigment epithelium—retina interface. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998. pp. 361–391. [Google Scholar]
- 31.Cherksey BD, inventor; New York University (New York, NY), assignee. Method for increasing the viability of cells which are administered to the brain or spinal cord. US patent 5,618,531. April 8, 1997.
- 32.Boulton M. Melanin and the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998. pp. 68–85. [Google Scholar]
- 33.Pawelek JM, Körner AM. The biosynthesis of mammalian melanin. Am Sci. 1982;70:136–145. [PubMed] [Google Scholar]
- 34.Jørgensen A, Wiencke AK, la Cour M, et al. Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci. 1998;39:1590–1599. [PubMed] [Google Scholar]
- 35.Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270:1189–1192. doi: 10.1126/science.270.5239.1189. [DOI] [PubMed] [Google Scholar]
- 36.Wenkel H, Streilein JW. Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest Ophthalmol Vis Sci. 1998;39:1823–1834. [PubMed] [Google Scholar]
- 37.Liversidge J, Forrester JV. Regulation of immune responses by the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998. pp. 511–527. [Google Scholar]
- 38.Campochiaro PA. Cytokine production by retinal pigmented epithelial cells. Int Rev Cytol. 1993;146:75–82. doi: 10.1016/S0074-7696(08)60380-0. [DOI] [PubMed] [Google Scholar]
- 39.Campochiaro PA. Growth factors in the retinal pigment epithelium and retina. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998. pp. 459–477. [Google Scholar]
- 40.Wissemann KW, Jacobson BS. Pure gelatin microcarriers: synthesis and use in cell attachment and growth of fibroblast and endothelial cells. In Vitro Cell Dev Biol. 1985;21:391–401. doi: 10.1007/BF02623470. [DOI] [PubMed] [Google Scholar]
- 41.Bhatt NS, Newsome DA, Fenech T, et al. Experimental transplantation of human retinal pigment epithelial cells on collagen substrates. Am J Ophthalmol. 1994;117:214–221. doi: 10.1016/s0002-9394(14)73079-x. [DOI] [PubMed] [Google Scholar]
- 42.Cherksey BD. Microcarrier pre-adhesion enhances long term survival of adults cells implanted into the mammalian brain. Exp Neurol. 1994;129:S18–S18. [Google Scholar]
- 43.Cherksey BD, Sapirstein VS, Geraci AL. Adrenal chromaffin cells on microcarriers exhibit enhanced long-term functional effects when implanted into the mammalian brain. Neuroscience. 1996;75:657–664. doi: 10.1016/0306-4522(96)00262-X. [DOI] [PubMed] [Google Scholar]
- 44.Potter BM, Kidwell W, Comfeldt M. Functional effects of intrastriatal hRPE grafts in hemiparkinsonian rats is enhanced by adhering to microcarriers. Soc Neurosci Abstr. 1997;778:10–10. [Google Scholar]
- 45.Tezel TH, Del Priore LV. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol. 1997;235:41–47. doi: 10.1007/BF01007836. [DOI] [PubMed] [Google Scholar]
- 46.Saporta S, Borlongan C, Moore J, et al. Microcarrier enhanced survival of human and rat fetal ventral mesencephalon cells implanted in the rat striatum. Cell Transplant. 1997;6:579–584. doi: 10.1016/S0963-6897(97)00115-2. [DOI] [PubMed] [Google Scholar]
- 47.Cherksey BD, inventor; The New York University Medical Center (New York, NY), assignee. Method for transplanting cells into the brain and therapeutic uses therefor. US patent 5,750,103. May 12, 1998.
- 48.Tatard VM, Venier-Julienne MC, Saulnier P, et al. Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials 2005;3727–3737. [DOI] [PubMed]
- 49.Liu JY, Hafner J, Dragieva G, Burg G. High yields of autologous living dermal equivalents using porcine gelatin microbeads as microcarriers for autologous fibroblasts. Cell Transplant. 2006;15:445–451. doi: 10.3727/000000006783981855. [DOI] [PubMed] [Google Scholar]
- 50.Tielens S, Declercq H, Gorski T, Lippens E, Schacht E. Cornelissen M. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study. Biomacromolecules. 2007;8:825–832. doi: 10.1021/bm060870u. [DOI] [PubMed] [Google Scholar]
- 51.Pfeffer B. Improved methodology for cell culture of human and monkey retinal pigment epithelium. Prog Retina Res. 1991;10:251–291. doi: 10.1016/0278-4327(91)90015-T. [DOI] [Google Scholar]
- 52.Borlongan CV, Saporta S, Sanberg PR. Intrastriatal transplantation of rat adrenal chromaffin cells seeded on microcarrier beads promote long-term functional recovery in hemiparkinsonian rats. Exp Neurol. 1998;154:203–214. doi: 10.1006/exnr.1998.6790. [DOI] [PubMed] [Google Scholar]
- 53.Subramanian T, Bakay RAE, Comfeldt ME, Watts RL. Blinded placebo-controlled trial to assess the effects of striatal transplantation of human retinal pigmented epithelial cells attached to microcarriers (hRPE-M) in parkinsonian monkeys. Parkinsonism Relat Disord. 1999;5:S111–S111. doi: 10.1016/S1353-8020(99)00017-6. [DOI] [Google Scholar]
- 54.Watts RL, Raiser CD, Stover NP, et al. Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson’s disease. J Neural Transm Suppl. 2003;65:215–227. doi: 10.1007/978-3-7091-0643-3_14. [DOI] [PubMed] [Google Scholar]
- 55.Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 1970;24:485–493. doi: 10.1016/0006-8993(70)90187-3. [DOI] [PubMed] [Google Scholar]
- 56.Subramanian T, Marchionini D, Potter EM, Comfeldt ML. Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response. Cell Transplant. 2002;11:207–214. [PubMed] [Google Scholar]
- 57.Ames B, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975;31:347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
- 58.Maron D, Ames B. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113:173–215. doi: 10.1016/0165-1161(83)90010-9. [DOI] [PubMed] [Google Scholar]
- 59.Bakay RAE, Raiser CD, Subramanian T, et al. Implantation of Spheramine® in advanced Parkinson’s disease. Front Biosci. 2004;9:592–602. doi: 10.2741/1217. [DOI] [PubMed] [Google Scholar]
- 60.Langston JW, Widner H, Goetz CG, et al. Core assessment program for intracerebral transplantations (CAPIT) Mov Disord. 1992;7:2–13. doi: 10.1002/mds.870070103. [DOI] [PubMed] [Google Scholar]
- 61.Stover NP, Bakay RAE, Subramanian T, et al. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch Neurol. 2005;62:1833–1837. doi: 10.1001/archneur.62.12.1833. [DOI] [PubMed] [Google Scholar]
- 62.Hauser RA, Friedlander J, Zesiewicz TA, et al. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesias. Clin Neuropharmacol. 2000;23:75–81. doi: 10.1097/00002826-200003000-00003. [DOI] [PubMed] [Google Scholar]
- 63.Goetz CG, Stebbins GT, Shale HM, et al. Utility of an objective dyskinesia rating scale for Parkinson’s disease: inter- and intrarater reliability assessment. Mov Disord. 1994;9:390–394. doi: 10.1002/mds.870090403. [DOI] [PubMed] [Google Scholar]
- 64.Peto V, Jenkinson C, Fitzpatrick R, Greenhall R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res. 1995;4:241–248. doi: 10.1007/BF02260863. [DOI] [PubMed] [Google Scholar]
- 65.Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing. 1997;26:353–357. doi: 10.1093/ageing/26.5.353. [DOI] [PubMed] [Google Scholar]
- 66.Bushnell DM, Martin ML. Quality of life and Parkinson’s disease: translation and validation of the US Parkinson’s Disease Questionnaire (PDQ-39) Qual Life Res. 1999;8:345–350. doi: 10.1023/A:1008979705027. [DOI] [PubMed] [Google Scholar]
- 67.Shetty N, Friedman JH, Kieburtz K, Marshall FJ, Oakes D, Parkinson Study Group The placebo response in Parkinson’s disease. Clin Neuropharmacol. 1999;22:207–212. [PubMed] [Google Scholar]
- 68.Goetz CG, Leurgans S, Raman R, Stebbins GT. Objective changes in motor function during placebo treatment in PD. Neurology. 2000;54:710–714. doi: 10.1212/wnl.54.3.710. [DOI] [PubMed] [Google Scholar]