Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2235–2242. doi: 10.1172/JCI119761

Macula densa arginine delivery and uptake in the rat regulates glomerular capillary pressure. Effects of salt intake.

W J Welch 1, C S Wilcox 1
PMCID: PMC508419  PMID: 9410901

Abstract

These studies tested the hypothesis that delivery and/or cellular uptake of L-arginine limits macula densa nitric oxide generation and actions on tubuloglomerular feedback (TGF) during salt restriction. Maximal TGF responses were assessed from reductions in proximal stop flow pressure during loop of Henle (LH) perfusion at 40 nl/min with artificial tubular fluid containing vehicles or drugs. Orthograde LH perfusion of L-arginine (10[-3] M) reduced maximal TGF significantly in rats adapted to low salt (LS: 7.9+/-0.4-6.3+/-0.4 mmHg; P < 0.05), but not high salt (HS: 5.8+/-0.3-5.9+/-0.3; NS). The effects were stereospecific and prevented by coperfusion with NG-methyl-L-arginine. Microperfusion of L-arginine (10[-3] M) into the peritubular capillaries reduced the maximum TGF response more in nephrons of LS than HS rats (deltaTGF: LS, 32+/-6 vs. HS, 13+/-4%; P < 0.05) and restored a TGF response to luminal perfusion of NG-methyl-L-arginine in LS rats. Coperfusion of nephrons with excess L-lysine or L-homoarginine, which compete with L-arginine for system y+ transport, blocked the fall in proximal stopflow pressure produced by orthograde LH perfusion of L-arginine in LS rats. Reabsorption of [3H]arginine by the perfused loop segment was similar in LS (93+/-2%) and HS (94+/-1%) rats. Coperfusion with excess L-arginine, L-lysine, or L-homoarginine, however, reduced [3H]arginine reabsorption significantly (P < 0.05) more in HS rats than in LS rats. In conclusion, blunting of maximal TGF responses in salt-restricted rats by nephron-derived NO is limited by L-arginine availability and cellular uptake via system y+.

Full Text

The Full Text of this article is available as a PDF (220.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann S., Bosse H. M., Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol. 1995 May;268(5 Pt 2):F885–F898. doi: 10.1152/ajprenal.1995.268.5.F885. [DOI] [PubMed] [Google Scholar]
  3. Belardinelli L., Shryock J. C., Zhang Y., Scammells P. J., Olsson R., Dennis D., Milner P., Pfister J., Baker S. P. 1,3-Dipropyl-8-[2-(5,6-epoxy)norbornyl]xanthine, a potent, specific and selective A1 adenosine receptor antagonist in the guinea pig heart and brain and in DDT1MF-2 cells. J Pharmacol Exp Ther. 1995 Dec;275(3):1167–1176. [PubMed] [Google Scholar]
  4. Bosse H. M., Böhm R., Resch S., Bachmann S. Parallel regulation of constitutive NO synthase and renin at JGA of rat kidney under various stimuli. Am J Physiol. 1995 Dec;269(6 Pt 2):F793–F805. doi: 10.1152/ajprenal.1995.269.6.F793. [DOI] [PubMed] [Google Scholar]
  5. Dantzler W. H., Silbernagl S. Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am J Physiol. 1988 Sep;255(3 Pt 2):F397–F407. doi: 10.1152/ajprenal.1988.255.3.F397. [DOI] [PubMed] [Google Scholar]
  6. Dantzler W. H., Silbernagl S. Basic amino acid transport in renal papilla: microinfusion of Henle's loops and vasa recta. Am J Physiol. 1993 Dec;265(6 Pt 2):F830–F838. doi: 10.1152/ajprenal.1993.265.6.F830. [DOI] [PubMed] [Google Scholar]
  7. Dantzler W. H., Silbernagl S. Specificity of amino acid transport in renal papilla: microinfusion of Henle's loops and vasa recta. Am J Physiol. 1991 Sep;261(3 Pt 2):F495–F504. doi: 10.1152/ajprenal.1991.261.3.F495. [DOI] [PubMed] [Google Scholar]
  8. Deng X., Welch W. J., Wilcox C. S. Renal vasodilation with L-arginine. Effects of dietary salt. Hypertension. 1995 Aug;26(2):256–262. doi: 10.1161/01.hyp.26.2.256. [DOI] [PubMed] [Google Scholar]
  9. He X. R., Greenberg S. G., Briggs J. P., Schnermann J. Effects of furosemide and verapamil on the NaCl dependency of macula densa-mediated renin secretion. Hypertension. 1995 Jul;26(1):137–142. doi: 10.1161/01.hyp.26.1.137. [DOI] [PubMed] [Google Scholar]
  10. Ito S., Ren Y. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest. 1993 Aug;92(2):1093–1098. doi: 10.1172/JCI116615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kamm D. E., Wu L., Kuchmy B. L. Contribution of the urea appearance rate to diuretic-induced azotemia in the rat. Kidney Int. 1987 Jul;32(1):47–56. doi: 10.1038/ki.1987.170. [DOI] [PubMed] [Google Scholar]
  12. Levillain O., Hus-Citharel A., Morel F., Bankir L. Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am J Physiol. 1993 Jun;264(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1993.264.6.F1038. [DOI] [PubMed] [Google Scholar]
  13. Levillain O., Hus-Citharel A., Morel F., Bankir L. Localization of urea and ornithine production along mouse and rabbit nephrons: functional significance. Am J Physiol. 1992 Nov;263(5 Pt 2):F878–F885. doi: 10.1152/ajprenal.1992.263.5.F878. [DOI] [PubMed] [Google Scholar]
  14. Lortie M. J., Novotny W. F., Peterson O. W., Vallon V., Malvey K., Mendonca M., Satriano J., Insel P., Thomson S. C., Blantz R. C. Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest. 1996 Jan 15;97(2):413–420. doi: 10.1172/JCI118430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacAllister R. J., Fickling S. A., Whitley G. S., Vallance P. Metabolism of methylarginines by human vasculature; implications for the regulation of nitric oxide synthesis. Br J Pharmacol. 1994 May;112(1):43–48. doi: 10.1111/j.1476-5381.1994.tb13026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mitchell J. A., Hecker M., Anggård E. E., Vane J. R. Cultured endothelial cells maintain their L-arginine level despite the continuous release of EDRF. Eur J Pharmacol. 1990 Jul 17;182(3):573–576. doi: 10.1016/0014-2999(90)90058-e. [DOI] [PubMed] [Google Scholar]
  17. Racusen L. C., Finn W. F., Whelton A., Solez K. Mechanisms of lysine-induced acute renal failure in rats. Kidney Int. 1985 Mar;27(3):517–522. doi: 10.1038/ki.1985.41. [DOI] [PubMed] [Google Scholar]
  18. Racusen L. C., Whelton A., Solez K. Effects of lysine and other amino acids on kidney structure and function in the rat. Am J Pathol. 1985 Sep;120(3):436–442. [PMC free article] [PubMed] [Google Scholar]
  19. Schmidt H. H., Baeblich S. E., Zernikow B. C., Klein M. M., Böhme E. L-arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells. Br J Pharmacol. 1990 Sep;101(1):145–151. doi: 10.1111/j.1476-5381.1990.tb12104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmidt K., Klatt P., Mayer B. Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase inhibitors. Mol Pharmacol. 1993 Sep;44(3):615–621. [PubMed] [Google Scholar]
  21. Schmidt K., List B. M., Klatt P., Mayer B. Characterization of neuronal amino acid transporters: uptake of nitric oxide synthase inhibitors and implication for their biological effects. J Neurochem. 1995 Apr;64(4):1469–1475. doi: 10.1046/j.1471-4159.1995.64041469.x. [DOI] [PubMed] [Google Scholar]
  22. Silbernagl S., Deetjen P. Molecular specificity of the L-arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney. Pflugers Arch. 1973 Jun 4;340(4):325–334. doi: 10.1007/BF00592310. [DOI] [PubMed] [Google Scholar]
  23. Silbernagl S., Völker K., Dantzler W. H. Cationic amino acid fluxes beyond the proximal convoluted tubule of rat kidney. Pflugers Arch. 1994 Dec;429(2):210–215. doi: 10.1007/BF00374314. [DOI] [PubMed] [Google Scholar]
  24. Singh I., Grams M., Wang W. H., Yang T., Killen P., Smart A., Schnermann J., Briggs J. P. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol. 1996 Jun;270(6 Pt 2):F1027–F1037. doi: 10.1152/ajprenal.1996.270.6.F1027. [DOI] [PubMed] [Google Scholar]
  25. Thorup C., Erik A., Persson G. Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int. 1996 Feb;49(2):430–436. doi: 10.1038/ki.1996.62. [DOI] [PubMed] [Google Scholar]
  26. Tojo A., Madsen K. M., Wilcox C. S. Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J. 1995 May;36(3):389–398. doi: 10.1536/ihj.36.389. [DOI] [PubMed] [Google Scholar]
  27. Welch W. J., Wilcox C. S. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa. J Clin Invest. 1992 Jun;89(6):1857–1865. doi: 10.1172/JCI115790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilcox C. S., Welch W. J. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. Kidney Int Suppl. 1996 Jun;55:S9–13. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES