Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2243–2253. doi: 10.1172/JCI119762

Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism.

G A Arreaza 1, M J Cameron 1, A Jaramillo 1, B M Gill 1, D Hardy 1, K B Laupland 1, M J Rapoport 1, P Zucker 1, S Chakrabarti 1, S W Chensue 1, H Y Qin 1, B Singh 1, T L Delovitch 1
PMCID: PMC508420  PMID: 9410902

Abstract

Optimal T cell responsiveness requires signaling through the T cell receptor (TCR) and CD28 costimulatory receptors. Previously, we showed that T cells from autoimmune nonobese diabetic (NOD) mice display proliferative hyporesponsiveness to TCR stimulation, which may be causal to the development of insulin-dependent diabetes mellitus (IDDM). Here, we demonstrate that anti-CD28 mAb stimulation restores complete NOD T cell proliferative responsiveness by augmentation of IL-4 production. Whereas neonatal treatment of NOD mice with anti-CD28 beginning at 2 wk of age inhibits destructive insulitis and protects against IDDM by enhancement of IL-4 production by islet-infiltrating T cells, administration of anti-CD28 beginning at 5-6 wk of age does not prevent IDDM. Simultaneous anti-IL-4 treatment abrogates the preventative effect of anti-CD28 treatment. Thus, neonatal CD28 costimulation during 2-4 wk of age is required to prevent IDDM, and is mediated by the generation of a Th2 cell-enriched nondestructive environment in the pancreatic islets of treated NOD mice. Our data support the hypothesis that a CD28 signal is requisite for activation of IL-4-producing cells and protection from IDDM.

Full Text

The Full Text of this article is available as a PDF (387.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. A., Maclaren N. K. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994 Nov 24;331(21):1428–1436. doi: 10.1056/NEJM199411243312107. [DOI] [PubMed] [Google Scholar]
  2. Bach J. F. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev. 1994 Aug;15(4):516–542. doi: 10.1210/edrv-15-4-516. [DOI] [PubMed] [Google Scholar]
  3. Bachmaier K., Pummerer C., Shahinian A., Ionescu J., Neu N., Mak T. W., Penninger J. M. Induction of autoimmunity in the absence of CD28 costimulation. J Immunol. 1996 Aug 15;157(4):1752–1757. [PubMed] [Google Scholar]
  4. Bendelac A., Carnaud C., Boitard C., Bach J. F. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987 Oct 1;166(4):823–832. doi: 10.1084/jem.166.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berman M. A., Sandborg C. I., Wang Z., Imfeld K. L., Zaldivar F., Jr, Dadufalza V., Buckingham B. A. Decreased IL-4 production in new onset type I insulin-dependent diabetes mellitus. J Immunol. 1996 Nov 15;157(10):4690–4696. [PubMed] [Google Scholar]
  6. Bluestone J. A. New perspectives of CD28-B7-mediated T cell costimulation. Immunity. 1995 Jun;2(6):555–559. doi: 10.1016/1074-7613(95)90000-4. [DOI] [PubMed] [Google Scholar]
  7. Boise L. H., Minn A. J., Noel P. J., June C. H., Accavitti M. A., Lindsten T., Thompson C. B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity. 1995 Jul;3(1):87–98. doi: 10.1016/1074-7613(95)90161-2. [DOI] [PubMed] [Google Scholar]
  8. Boitard C., Yasunami R., Dardenne M., Bach J. F. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J Exp Med. 1989 May 1;169(5):1669–1680. doi: 10.1084/jem.169.5.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown D. R., Green J. M., Moskowitz N. H., Davis M., Thompson C. B., Reiner S. L. Limited role of CD28-mediated signals in T helper subset differentiation. J Exp Med. 1996 Sep 1;184(3):803–810. doi: 10.1084/jem.184.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chatenoud L., Thervet E., Primo J., Bach J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):123–127. doi: 10.1073/pnas.91.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chensue S. W., Warmington K. S., Lukacs N. W., Lincoln P. M., Burdick M. D., Strieter R. M., Kunkel S. L. Monocyte chemotactic protein expression during schistosome egg granuloma formation. Sequence of production, localization, contribution, and regulation. Am J Pathol. 1995 Jan;146(1):130–138. [PMC free article] [PubMed] [Google Scholar]
  12. Christianson S. W., Shultz L. D., Leiter E. H. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes. 1993 Jan;42(1):44–55. doi: 10.2337/diab.42.1.44. [DOI] [PubMed] [Google Scholar]
  13. Chu N. R., DeBenedette M. A., Stiernholm B. J., Barber B. H., Watts T. H. Role of IL-12 and 4-1BB ligand in cytokine production by CD28+ and CD28- T cells. J Immunol. 1997 Apr 1;158(7):3081–3089. [PubMed] [Google Scholar]
  14. Corry D. B., Reiner S. L., Linsley P. S., Locksley R. M. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J Immunol. 1994 Nov 1;153(9):4142–4148. [PubMed] [Google Scholar]
  15. Elliott J. F., Qin H. Y., Bhatti S., Smith D. K., Singh R. K., Dillon T., Lauzon J., Singh B. Immunization with the larger isoform of mouse glutamic acid decarboxylase (GAD67) prevents autoimmune diabetes in NOD mice. Diabetes. 1994 Dec;43(12):1494–1499. doi: 10.2337/diab.43.12.1494. [DOI] [PubMed] [Google Scholar]
  16. Freeman G. J., Borriello F., Hodes R. J., Reiser H., Gribben J. G., Ng J. W., Kim J., Goldberg J. M., Hathcock K., Laszlo G. Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med. 1993 Dec 1;178(6):2185–2192. doi: 10.1084/jem.178.6.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freeman G. J., Boussiotis V. A., Anumanthan A., Bernstein G. M., Ke X. Y., Rennert P. D., Gray G. S., Gribben J. G., Nadler L. M. B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity. 1995 May;2(5):523–532. doi: 10.1016/1074-7613(95)90032-2. [DOI] [PubMed] [Google Scholar]
  18. Gause W. C., Halvorson M. J., Lu P., Greenwald R., Linsley P., Urban J. F., Finkelman F. D. The function of costimulatory molecules and the development of IL-4-producing T cells. Immunol Today. 1997 Mar;18(3):115–120. doi: 10.1016/s0167-5699(97)01005-0. [DOI] [PubMed] [Google Scholar]
  19. Gillis S., Smith K. A. Long term culture of tumour-specific cytotoxic T cells. Nature. 1977 Jul 14;268(5616):154–156. doi: 10.1038/268154a0. [DOI] [PubMed] [Google Scholar]
  20. Gombert J. M., Herbelin A., Tancrède-Bohin E., Dy M., Carnaud C., Bach J. F. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol. 1996 Dec;26(12):2989–2998. doi: 10.1002/eji.1830261226. [DOI] [PubMed] [Google Scholar]
  21. Gross J. A., Callas E., Allison J. P. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol. 1992 Jul 15;149(2):380–388. [PubMed] [Google Scholar]
  22. Haskins K., McDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science. 1990 Sep 21;249(4975):1433–1436. doi: 10.1126/science.2205920. [DOI] [PubMed] [Google Scholar]
  23. Herold K. C., Vezys V., Sun Q., Viktora D., Seung E., Reiner S., Brown D. R. Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol. 1996 May 1;156(9):3521–3527. [PubMed] [Google Scholar]
  24. Holter W., Majdic O., Kalthoff F. S., Knapp W. Regulation of interleukin-4 production in human mononuclear cells. Eur J Immunol. 1992 Oct;22(10):2765–2767. doi: 10.1002/eji.1830221047. [DOI] [PubMed] [Google Scholar]
  25. Hu-Li J., Ohara J., Watson C., Tsang W., Paul W. E. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol. 1989 Feb 1;142(3):800–807. [PubMed] [Google Scholar]
  26. Jaramillo A., Gill B. M., Delovitch T. L. Insulin dependent diabetes mellitus in the non-obese diabetic mouse: a disease mediated by T cell anergy? Life Sci. 1994;55(15):1163–1177. doi: 10.1016/0024-3205(94)00655-5. [DOI] [PubMed] [Google Scholar]
  27. Jenkins M. K., Mueller D., Schwartz R. H., Carding S., Bottomley K., Stadecker M. J., Urdahl K. B., Norton S. D. Induction and maintenance of anergy in mature T cells. Adv Exp Med Biol. 1991;292:167–176. doi: 10.1007/978-1-4684-5943-2_19. [DOI] [PubMed] [Google Scholar]
  28. June C. H., Bluestone J. A., Nadler L. M., Thompson C. B. The B7 and CD28 receptor families. Immunol Today. 1994 Jul;15(7):321–331. doi: 10.1016/0167-5699(94)90080-9. [DOI] [PubMed] [Google Scholar]
  29. Kaliński P., Hilkens C. M., Wierenga E. A., van der Pouw-Kraan T. C., van Lier R. A., Bos J. D., Kapsenberg M. L., Snijdewint F. G. Functional maturation of human naive T helper cells in the absence of accessory cells. Generation of IL-4-producing T helper cells does not require exogenous IL-4. J Immunol. 1995 Apr 15;154(8):3753–3760. [PubMed] [Google Scholar]
  30. Katz J. D., Benoist C., Mathis D. T helper cell subsets in insulin-dependent diabetes. Science. 1995 May 26;268(5214):1185–1188. doi: 10.1126/science.7761837. [DOI] [PubMed] [Google Scholar]
  31. Kawamura T., Furue M. Comparative analysis of B7-1 and B7-2 expression in Langerhans cells: differential regulation by T helper type 1 and T helper type 2 cytokines. Eur J Immunol. 1995 Jul;25(7):1913–1917. doi: 10.1002/eji.1830250718. [DOI] [PubMed] [Google Scholar]
  32. King C. L., Stupi R. J., Craighead N., June C. H., Thyphronitis G. CD28 activation promotes Th2 subset differentiation by human CD4+ cells. Eur J Immunol. 1995 Feb;25(2):587–595. doi: 10.1002/eji.1830250242. [DOI] [PubMed] [Google Scholar]
  33. Krummel M. F., Allison J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995 Aug 1;182(2):459–465. doi: 10.1084/jem.182.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kuchroo V. K., Das M. P., Brown J. A., Ranger A. M., Zamvil S. S., Sobel R. A., Weiner H. L., Nabavi N., Glimcher L. H. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995 Mar 10;80(5):707–718. doi: 10.1016/0092-8674(95)90349-6. [DOI] [PubMed] [Google Scholar]
  35. Lenschow D. J., Herold K. C., Rhee L., Patel B., Koons A., Qin H. Y., Fuchs E., Singh B., Thompson C. B., Bluestone J. A. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity. 1996 Sep;5(3):285–293. doi: 10.1016/s1074-7613(00)80323-4. [DOI] [PubMed] [Google Scholar]
  36. Lenschow D. J., Ho S. C., Sattar H., Rhee L., Gray G., Nabavi N., Herold K. C., Bluestone J. A. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med. 1995 Mar 1;181(3):1145–1155. doi: 10.1084/jem.181.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lenschow D. J., Su G. H., Zuckerman L. A., Nabavi N., Jellis C. L., Gray G. S., Miller J., Bluestone J. A. Expression and functional significance of an additional ligand for CTLA-4. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11054–11058. doi: 10.1073/pnas.90.23.11054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lenschow D. J., Walunas T. L., Bluestone J. A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. doi: 10.1146/annurev.immunol.14.1.233. [DOI] [PubMed] [Google Scholar]
  39. Liblau R. S., Singer S. M., McDevitt H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995 Jan;16(1):34–38. doi: 10.1016/0167-5699(95)80068-9. [DOI] [PubMed] [Google Scholar]
  40. Linsley P. S., Clark E. A., Ledbetter J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5031–5035. doi: 10.1073/pnas.87.13.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lu P., Zhou X., Chen S. J., Moorman M., Morris S. C., Finkelman F. D., Linsley P., Urban J. F., Gause W. C. CTLA-4 ligands are required to induce an in vivo interleukin 4 response to a gastrointestinal nematode parasite. J Exp Med. 1994 Aug 1;180(2):693–698. doi: 10.1084/jem.180.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McArthur J. G., Raulet D. H. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interleukin 4. J Exp Med. 1993 Nov 1;178(5):1645–1653. doi: 10.1084/jem.178.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  44. Mueller R., Krahl T., Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 1996 Sep 1;184(3):1093–1099. doi: 10.1084/jem.184.3.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Murphy E., Shibuya K., Hosken N., Openshaw P., Maino V., Davis K., Murphy K., O'Garra A. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med. 1996 Mar 1;183(3):901–913. doi: 10.1084/jem.183.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ohara J., Paul W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. doi: 10.1038/315333a0. [DOI] [PubMed] [Google Scholar]
  47. Pennline K. J., Roque-Gaffney E., Monahan M. Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol. 1994 May;71(2):169–175. doi: 10.1006/clin.1994.1068. [DOI] [PubMed] [Google Scholar]
  48. Perez V. L., Lederer J. A., Lichtman A. H., Abbas A. K. Stability of Th1 and Th2 populations. Int Immunol. 1995 May;7(5):869–875. doi: 10.1093/intimm/7.5.869. [DOI] [PubMed] [Google Scholar]
  49. Pilström B., Björk L., Böhme J. Demonstration of a TH1 cytokine profile in the late phase of NOD insulitis. Cytokine. 1995 Nov;7(8):806–814. doi: 10.1006/cyto.1995.0097. [DOI] [PubMed] [Google Scholar]
  50. Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes. 1994 May;43(5):613–621. doi: 10.2337/diab.43.5.613. [DOI] [PubMed] [Google Scholar]
  51. Rabinovitch A., Suarez-Pinzon W. L., Sorensen O., Bleackley R. C., Power R. F. IFN-gamma gene expression in pancreatic islet-infiltrating mononuclear cells correlates with autoimmune diabetes in nonobese diabetic mice. J Immunol. 1995 May 1;154(9):4874–4882. [PubMed] [Google Scholar]
  52. Radvanyi L. G., Shi Y., Vaziri H., Sharma A., Dhala R., Mills G. B., Miller R. G. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol. 1996 Mar 1;156(5):1788–1798. [PubMed] [Google Scholar]
  53. Ranger A. M., Das M. P., Kuchroo V. K., Glimcher L. H. B7-2 (CD86) is essential for the development of IL-4-producing T cells. Int Immunol. 1996 Oct;8(10):1549–1560. doi: 10.1093/intimm/8.10.1549. [DOI] [PubMed] [Google Scholar]
  54. Rapoport M. J., Jaramillo A., Zipris D., Lazarus A. H., Serreze D. V., Leiter E. H., Cyopick P., Danska J. S., Delovitch T. L. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med. 1993 Jul 1;178(1):87–99. doi: 10.1084/jem.178.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rapoport M. J., Lazarus A. H., Jaramillo A., Speck E., Delovitch T. L. Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation of the pathway of p21ras activation. J Exp Med. 1993 Apr 1;177(4):1221–1226. doi: 10.1084/jem.177.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rincón M., Anguita J., Nakamura T., Fikrig E., Flavell R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med. 1997 Feb 3;185(3):461–469. doi: 10.1084/jem.185.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rohane P. W., Shimada A., Kim D. T., Edwards C. T., Charlton B., Shultz L. D., Fathman C. G. Islet-infiltrating lymphocytes from prediabetic NOD mice rapidly transfer diabetes to NOD-scid/scid mice. Diabetes. 1995 May;44(5):550–554. doi: 10.2337/diab.44.5.550. [DOI] [PubMed] [Google Scholar]
  58. Rulifson I. C., Sperling A. I., Fields P. E., Fitch F. W., Bluestone J. A. CD28 costimulation promotes the production of Th2 cytokines. J Immunol. 1997 Jan 15;158(2):658–665. [PubMed] [Google Scholar]
  59. Seder R. A., Germain R. N., Linsley P. S., Paul W. E. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med. 1994 Jan 1;179(1):299–304. doi: 10.1084/jem.179.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Seder R. A., Germain R. N., Linsley P. S., Paul W. E. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med. 1994 Jan 1;179(1):299–304. doi: 10.1084/jem.179.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Seder R. A., Paul W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol. 1994;12:635–673. doi: 10.1146/annurev.iy.12.040194.003223. [DOI] [PubMed] [Google Scholar]
  62. Serreze D. V., Gaskins H. R., Leiter E. H. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J Immunol. 1993 Mar 15;150(6):2534–2543. [PubMed] [Google Scholar]
  63. Serreze D. V., Leiter E. H. Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol. 1988 Jun 1;140(11):3801–3807. [PubMed] [Google Scholar]
  64. Shehadeh N. N., LaRosa F., Lafferty K. J. Altered cytokine activity in adjuvant inhibition of autoimmune diabetes. J Autoimmun. 1993 Jun;6(3):291–300. doi: 10.1006/jaut.1993.1025. [DOI] [PubMed] [Google Scholar]
  65. Shi Y., Radvanyi L. G., Sharma A., Shaw P., Green D. R., Miller R. G., Mills G. B. CD28-mediated signaling in vivo prevents activation-induced apoptosis in the thymus and alters peripheral lymphocyte homeostasis. J Immunol. 1995 Aug 15;155(4):1829–1837. [PubMed] [Google Scholar]
  66. Shimada A., Rohane P., Fathman C. G., Charlton B. Pathogenic and protective roles of CD45RB(low) CD4+ cells correlate with cytokine profiles in the spontaneously autoimmune diabetic mouse. Diabetes. 1996 Jan;45(1):71–78. doi: 10.2337/diab.45.1.71. [DOI] [PubMed] [Google Scholar]
  67. Shizuru J. A., Taylor-Edwards C., Banks B. A., Gregory A. K., Fathman C. G. Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. Science. 1988 Apr 29;240(4852):659–662. doi: 10.1126/science.2966437. [DOI] [PubMed] [Google Scholar]
  68. Sperling A. I., Auger J. A., Ehst B. D., Rulifson I. C., Thompson C. B., Bluestone J. A. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol. 1996 Nov 1;157(9):3909–3917. [PubMed] [Google Scholar]
  69. Stack R. M., Lenschow D. J., Gray G. S., Bluestone J. A., Fitch F. W. IL-4 treatment of small splenic B cells induces costimulatory molecules B7-1 and B7-2. J Immunol. 1994 Jun 15;152(12):5723–5733. [PubMed] [Google Scholar]
  70. Szabo S. J., Jacobson N. G., Dighe A. S., Gubler U., Murphy K. M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity. 1995 Jun;2(6):665–675. doi: 10.1016/1074-7613(95)90011-x. [DOI] [PubMed] [Google Scholar]
  71. Tanaka T., Ben-Sasson S. Z., Paul W. E. IL-4 increases IL-2 production by T cells in response to accessory cell-independent stimuli. J Immunol. 1991 Jun 1;146(11):3831–3839. [PubMed] [Google Scholar]
  72. Thompson C. B. Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation? Cell. 1995 Jun 30;81(7):979–982. doi: 10.1016/s0092-8674(05)80001-7. [DOI] [PubMed] [Google Scholar]
  73. Tisch R., McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996 May 3;85(3):291–297. doi: 10.1016/s0092-8674(00)81106-x. [DOI] [PubMed] [Google Scholar]
  74. Wang R., Fang Q., Zhang L., Radvany L., Sharma A., Noben-Trauth N., Mills G. B., Shi Y. CD28 ligation prevents bacterial toxin-induced septic shock in mice by inducing IL-10 expression. J Immunol. 1997 Mar 15;158(6):2856–2861. [PubMed] [Google Scholar]
  75. Wang Y., Pontesilli O., Gill R. G., La Rosa F. G., Lafferty K. J. The role of CD4+ and CD8+ T cells in the destruction of islet grafts by spontaneously diabetic mice. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):527–531. doi: 10.1073/pnas.88.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Webb L. M., Feldmann M. Critical role of CD28/B7 costimulation in the development of human Th2 cytokine-producing cells. Blood. 1995 Nov 1;86(9):3479–3486. [PubMed] [Google Scholar]
  77. Zipris D., Lazarus A. H., Crow A. R., Hadzija M., Delovitch T. L. Defective thymic T cell activation by concanavalin A and anti-CD3 in autoimmune nonobese diabetic mice. Evidence for thymic T cell anergy that correlates with the onset of insulitis. J Immunol. 1991 Jun 1;146(11):3763–3771. [PubMed] [Google Scholar]
  78. de Boer M., Kasran A., Kwekkeboom J., Walter H., Vandenberghe P., Ceuppens J. L. Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol. 1993 Dec;23(12):3120–3125. doi: 10.1002/eji.1830231212. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES