Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2009 Jan;6(1):53–77. doi: 10.1016/j.nurt.2008.10.039

Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs

Mark J Millan 1,
PMCID: PMC5084256  PMID: 19110199

Summary

The past decade of efforts to find improved treatment for major depression has been dominated by genome-driven programs of rational drug discovery directed toward highly selective ligands for nonmonoaminergic agents. Selective drugs may prove beneficial for specific symptoms, for certain patient subpopulations, or both. However, network analyses of the brain and its dysfunction suggest that agents with multiple and complementary modes of action are more likely to show broad-based efficacy against core and comorbid symptoms of depression. Strategies for improved multitarget exploitation of monoaminergic mechanisms include triple inhibitors of dopamine, serotonin (5-HT) and noradrenaline reuptake, and drugs interfering with feedback actions of monoamines at inhibitory 5-HT1A, 5-HT1B and possibly 5-HT5A and 5-HT7 receptors. Specific subsets of postsynaptic 5-HT receptors mediating antidepressant actions are under study (e.g., 5-HT4 and 5-HT6). Association of a clinically characterized antidepressant mechanism with a nonmonoaminergic component of activity is an attractive strategy. For example, agomelatine (a melatonin agonist/5-HT2C antagonist) has clinically proven activity in major depression. Dual neurokinin1 antagonists/5-HT reuptake inhibitors (SRIs) and melanocortin4 antagonists/SRIs should display advantages over their selective counterparts, and histamine H3 antagonists/SRIs, GABAB antagonists/SRIs, glutamatergic/SRIs, and cholinergic agents/SRIs may counter the compromised cognitive function of depression. Finally, drugs that suppress 5-HT reuptake and blunt hypothalamo-pituitary-adrenocorticotrophic axis overdrive, or that act at intracellular proteins such as GSK-3β, may abrogate the negative effects of chronic stress on mood and neuronal integrity. This review discusses the discovery and development of dual- and triple-acting antidepressants, focusing on novel concepts and new drugs disclosed over the last 2 to 3 years.

Key Words: Antidepressant, multitarget, network, stress, HPA axis, CRF

References

  • 1.Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29:1765–1781. doi: 10.1038/sj.npp.1300506. [DOI] [PubMed] [Google Scholar]
  • 2.Morilak DA, Frazer A. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol. 2007;7:193–218. doi: 10.1017/S1461145704004080. [DOI] [PubMed] [Google Scholar]
  • 3.Millan MJ. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006;110:135–370. doi: 10.1016/j.pharmthera.2005.11.006. [DOI] [PubMed] [Google Scholar]
  • 4.Millan MJ. The discovery and development of pharmacotherapy for psychiatric disorders: a critical survey of animal and translational models, and perspectives for their improvement. In: McArthur R, Borsini F, editors. Translational models for CNS drug discovery. Vol 1: Psychiatric disorders. New York: Academic Press; 2008. pp. 32–89. [Google Scholar]
  • 5.Hollon SD, Stewart MO, Strunk D. Enduring effects for cognitive behavior therapy in the treatment of depression and anxiety. Annu Rev Psychol. 2006;57:285–315. doi: 10.1146/annurev.psych.57.102904.190044. [DOI] [PubMed] [Google Scholar]
  • 6.Eitan R, Lerer B. Nonpharmacological, somatic treatments of depression: electroconvulsive therapy and novel brain stimulation modalities. Dialogues Clin Neurosci. 2006;8:241–258. doi: 10.31887/DCNS.2006.8.2/reitan. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Baghai TC, Grunze H, Sartorius N. Antidepressant medications and other treatments of depressive disorders: a CINP task force report based on a review of evidence. Int J Neuropsychopharmacol. 2007;10(Suppl 1):S1–S207. doi: 10.1017/S1461145707008255. [DOI] [PubMed] [Google Scholar]
  • 8.O’Reardon JP, Solvason HB, Janicak PG, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–1216. doi: 10.1016/j.biopsych.2007.01.018. [DOI] [PubMed] [Google Scholar]
  • 9.Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–151. doi: 10.1038/nrn1846. [DOI] [PubMed] [Google Scholar]
  • 10.Castrén E. Is mood chemistry? Nat Rev Neurosci. 2005;6:241–246. doi: 10.1038/nrn1629. [DOI] [PubMed] [Google Scholar]
  • 11.Csermely P. Strong links are important, but weak links stabilize them. Trends Biochem Sci. 2004;29:331–334. doi: 10.1016/j.tibs.2004.05.004. [DOI] [PubMed] [Google Scholar]
  • 12.Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26:180–182. doi: 10.1016/j.tips.2005.02.007. [DOI] [PubMed] [Google Scholar]
  • 13.Morphy R, Rankovic Z. The physicochemical challenges of designing multiple ligands. J Med Chem. 2006;49:4961–4970. doi: 10.1021/jm0603015. [DOI] [PubMed] [Google Scholar]
  • 14.Morphy R, Rankovic Z. Fragments, network biology and designing multiple ligands. Drug Discov Today. 2007;12:156–160. doi: 10.1016/j.drudis.2006.12.006. [DOI] [PubMed] [Google Scholar]
  • 15.Wong EHF, Nikam SS, Shahid M. Multi- and single-target agents for major psychiatric diseases: therapeutic opportunities and challenges. Curr Opin Investig Drugs. 2008;9:28–36. [PubMed] [Google Scholar]
  • 16.Huang S. Rational drug discovery: what can we learn from regulatory networks? Drug Discov Today. 2002;7:S163–S169. doi: 10.1016/s1359-6446(02)02463-7. [DOI] [PubMed] [Google Scholar]
  • 17.Holsboer F. How can we realize the promise of personalized antidepressant medicines? Nat Rev Neurosci. 2008;9:638–646. doi: 10.1038/nrn2453. [DOI] [PubMed] [Google Scholar]
  • 18.Cooper-Kazaz Lerer B. Efficacy and safety of triiodothyronine supplementation in patients with major depressive disorder treated with specific serotonin reuptake inhibitors. Int J Neuropsychopharmacol. 2008;11:685–699. doi: 10.1017/S1461145707008206. [DOI] [PubMed] [Google Scholar]
  • 19.McIntyre M, Moral MA. Augmentation in treatment-resistant depression. Drugs Fut. 2006;31:1069–1081. [Google Scholar]
  • 20.Rasmussen K. Creating more effective antidepressants: clues from the clinic. Drug Discov Today. 2006;11:623–631. doi: 10.1016/j.drudis.2006.05.004. [DOI] [PubMed] [Google Scholar]
  • 21.Rojo JE, Ros S, Agitera L, de la Gándara J, de Pedro JM. Combined antidepressants: clinical experience. Acta Psychiatr Scand Suppl 2005;(428):25–31. [DOI] [PubMed]
  • 22.Ros S, Agüera L, de la Gándara J, Rojo JE, de Pedro JM. Potentiation strategies for treatment-resistant depression. Acta Psychiatr Scand Suppl 2005;(428):14–24,36. [DOI] [PubMed]
  • 23.Benedetti F, Barbini B, Colombo C, Smeraldi E. Chronotherapeutics in a psychiatric ward. Sleep Med Rev. 2007;11:509–522. doi: 10.1016/j.smrv.2007.06.004. [DOI] [PubMed] [Google Scholar]
  • 24.Barrett J, Della-Maggiore V, Chouinard PA, Paus T. Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: behavioral and brain imaging studies. Neuropsychopharmacology. 2004;29:1172–1189. doi: 10.1038/sj.npp.1300411. [DOI] [PubMed] [Google Scholar]
  • 25.Kraus T, Hösl K, Kiess O, et al. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect of transcutaneous vagus nerve stimulation. J Neural Transm. 2007;114:1485–1493. doi: 10.1007/s00702-007-0755-z. [DOI] [PubMed] [Google Scholar]
  • 26.Johansen-Berg H, Gutman DA, Behrens TEJ, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2007;18:1374–1383. doi: 10.1093/cercor/bhm167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Roffman JL, Marci CD, Glick DM, Dougherty DD, Rauch SL. Neuroimaging and the functional neuroanatomy of psychotherapy. Psychol Med. 2005;35:1385–1398. doi: 10.1017/S0033291705005064. [DOI] [PubMed] [Google Scholar]
  • 28.De Maat SM, Dekker J, Schoevers RA, de Jonghe F. Relative efficacy of psychotherapy and combined therapy in treatment of depression: a meta-analysis. Eur Psychiatry. 2007;22:1–8. doi: 10.1016/j.eurpsy.2006.10.008. [DOI] [PubMed] [Google Scholar]
  • 29.Kennedy SH, Konarski JZ, Segal ZV, et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry. 2007;164:778–788. doi: 10.1176/ajp.2007.164.5.778. [DOI] [PubMed] [Google Scholar]
  • 30.Luty SE, Carter JD, McKenzic JM, et al. Randomised controlled trial of interpersonal psychotherapy and cognitive-behavioral therapy for depression. Br J Psychiatry. 2007;190:496–502. doi: 10.1192/bjp.bp.106.024729. [DOI] [PubMed] [Google Scholar]
  • 31.Anderson IM. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: a meta-analysis of efficacy and tolerability. J Affective Dis. 2000;58:19–36. doi: 10.1016/s0165-0327(99)00092-0. [DOI] [PubMed] [Google Scholar]
  • 32.Pacher P, Kecskemeti V. Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns? Curr Pharm Design. 2004;10:2463–2475. doi: 10.2174/1381612043383872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Tegeder I, Geisslinger G. Cardiovascular risk with cyclooxygenase inhibitors: general problem with substance specific differences? Naunyn Schmiedebergs Arch Pharmacol. 2006;373:1–17. doi: 10.1007/s00210-006-0044-7. [DOI] [PubMed] [Google Scholar]
  • 34.Millan MJ, Brocco M. Cognitive impairment in schizophrenia: developmental and genetic models, and pro-cognitive profile of the optimised D3>D2 antagonist, S33138. Therapic. 2008;63:187–229. doi: 10.2515/therapie:2008041. [DOI] [PubMed] [Google Scholar]
  • 35.Barbui C, Hotopf M. Amitriptyline v. the rest: still the leading antidepressant after 40 years of randomised controlled trials. Br J Psychiatry. 2001;178:129–144. doi: 10.1192/bjp.178.2.129. [DOI] [PubMed] [Google Scholar]
  • 36.Malhi GS, Parker GB, Greenwood J. Structural and functional models of depression: from sub-types to substrates. Acta Psychiatr Scand. 2005;111:94–105. doi: 10.1111/j.1600-0447.2004.00475.x. [DOI] [PubMed] [Google Scholar]
  • 37.Papakostas GI, Thase ME, Fava M, Nelson JC, Shelton RC. Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating depressive disorder? A meta-analysis of studies of newer agents. Biol Psychiatry. 2007;62:1217–1227. doi: 10.1016/j.biopsych.2007.03.027. [DOI] [PubMed] [Google Scholar]
  • 38.Montgomery SA, Baldwin DS, Blier P, et al. Which antidepressants have demonstrated superior efficacy? A review of the evidence. Int Clin Psychopharmacol. 2007;22:323–329. doi: 10.1097/YIC.0b013e3282eff7e0. [DOI] [PubMed] [Google Scholar]
  • 39.Devoto P, Flore G, Pira L, Longu G, Gessa GL. Mirtazapine-induced co-release of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex. Eur J Pharmacol. 2004;487:105–111. doi: 10.1016/j.ejphar.2004.01.018. [DOI] [PubMed] [Google Scholar]
  • 40.Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J Psychopharmacol. 2000;14:114–138. doi: 10.1177/026988110001400202. [DOI] [PubMed] [Google Scholar]
  • 41.Nestler EJ, Carlzon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–1159. doi: 10.1016/j.biopsych.2005.09.018. [DOI] [PubMed] [Google Scholar]
  • 42.Hull EM, Muschamp JW, Sato S. Dopamine and serotonin: influences on male sexual behavior. Physiol Behav. 2004;83:291–307. doi: 10.1016/j.physbeh.2004.08.018. [DOI] [PubMed] [Google Scholar]
  • 43.El-Ghundi M, O’Dowd BF, George SR. Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci. 2007;18:37–66. doi: 10.1515/revneuro.2007.18.1.37. [DOI] [PubMed] [Google Scholar]
  • 44.Trivedi MH, Fava M, Wisniewski SR, et al. Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006;354:1243–1252. doi: 10.1056/NEJMoa052964. [DOI] [PubMed] [Google Scholar]
  • 45.Rica C, Hascoet M, Bourin M. Is co-administration of bupropion with SSRIs and SNRIs in forced swim test in mice predictive of efficacy in resistant depression? Behav Brain Res. 2008;194:92–99. doi: 10.1016/j.bbr.2008.06.028. [DOI] [PubMed] [Google Scholar]
  • 46.Axford L, Boot JR, Hotten TM, et al. Bicyclo[2.2.1.]heptanes as novel triple re-uptake inhibitors for the treatment of depression. Bioorg Med Chem Lett. 2003;13:3277–3280. doi: 10.1016/s0960-894x(03)00660-7. [DOI] [PubMed] [Google Scholar]
  • 47.Shaw AM, Boules M, Zhang Y, et al. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur J Pharmacol. 2007;555:30–36. doi: 10.1016/j.ejphar.2006.10.004. [DOI] [PubMed] [Google Scholar]
  • 48.Skolnick P, Basile AS. Triple reuptake inhibitors as antidepressants. Drug Discov Today Ther Strateg. 2006;3:489–494. [Google Scholar]
  • 49.Skolnick P, Krieter P, Tizzano J, et al. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev. 2006;12:123–134. doi: 10.1111/j.1527-3458.2006.00123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhang S, Fernandez F, Hazeldine S, et al. Further structural exploration of trisubstituted asymmetric pyran derivatives (2S,4R,5R)-2-benzhydryl-5-benzylamino-tetrahydropyran-4-ol and their corresponding disubstituted (3S,6S) pyran derivatives: a proposed pharmacophore model for high-affinity interaction with the dopamine, serotonin, and norepinephrine transporters. J Med Chem. 2006;49:4239–4247. doi: 10.1021/jm0601699. [DOI] [PubMed] [Google Scholar]
  • 51.Aluisio L, Lord B, Barbier AJ, et al. In-vitro and in-vivo characterization of JNJ-7925476, a novel triple monoamine uptake inhibitor. Eur J Pharmacol. 2008;587:141–146. doi: 10.1016/j.ejphar.2008.04.008. [DOI] [PubMed] [Google Scholar]
  • 52.Samaha AN, Robinson TE. Why does the rapid delivery of drugs to the brain promote addiction? Trends Pharmacol Sci. 2005;26:82–87. doi: 10.1016/j.tips.2004.12.007. [DOI] [PubMed] [Google Scholar]
  • 53.Volkow ND, Wang GJ, Fowler JS, et al. The slow and long-lasting blockade of dopamine transporters in human brain induced by the new antidepressant drug radafaxine predict poor reinforcing effects. Biol Psychiatry. 2005;57:640–646. doi: 10.1016/j.biopsych.2004.12.007. [DOI] [PubMed] [Google Scholar]
  • 54.Hauser RA, Salin L, Juhel N, Konyago VL. Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson’s disease. Mov Disord. 2007;22:359–365. doi: 10.1002/mds.21258. [DOI] [PubMed] [Google Scholar]
  • 55.Artigas F, Adell A, Celada P. Pindolol augmentation of antidepressant response. Curr Drug Targets. 2006;7:139–147. doi: 10.2174/138945006775515446. [DOI] [PubMed] [Google Scholar]
  • 56.Gobert A, Millan MJ. Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (−)-pindolol alone and in association with 5-HT reuptake inhibitors: comparative roles of β-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology. 1999;21:268–284. doi: 10.1016/S0893-133X(99)00035-4. [DOI] [PubMed] [Google Scholar]
  • 57.Bymaster FP, McNamara RK, Tran PV. New approaches to developing antidepressants by enhancing monoaminergic neurotransmission. Expert Opin Investig Drugs. 2003;12:531–543. doi: 10.1517/13543784.12.4.531. [DOI] [PubMed] [Google Scholar]
  • 58.Celada P, Puig MV, Amargos-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–265. [PMC free article] [PubMed] [Google Scholar]
  • 59.Weikop P, Kehr J, Scheel-Krüger J. Reciprocal effects of combined administration of serotonin, noradrenaline and dopamine reuptake inhibitors on serotonin and dopamine in the rat prefrontal cortex: the role of 5-HT1A receptors. J Psychopharmacol. 2007;21:795–804. doi: 10.1177/0269881107077347. [DOI] [PubMed] [Google Scholar]
  • 60.Dawson LA, Bromidge SM. 5-HT1 receptor augmentation strategies as enhanced efficacy: therapeutics for psychiatric disorders. Curr Top Med Chem. 2008;8:1008–1023. doi: 10.2174/156802608785161439. [DOI] [PubMed] [Google Scholar]
  • 61.Rex A, Voigt JP, Wicke KM, Fink H. In vivo/ex vivo and behavioural study on effects of 5-HT1B/1D and 5-HT1A antagonists in guinea pigs. Pharmacol Biochem Behav. 2008;88:196–204. doi: 10.1016/j.pbb.2007.07.016. [DOI] [PubMed] [Google Scholar]
  • 62.Hatzenbuhler NT, Evrard DA, Harrison BL, et al. Synthesis and biological evaluation of novel compounds within a class of 3-aminochroman derivatives with 5-HT1A receptor and serotonin transporter affinity. J Med Chem. 2006;49:4785–4789. doi: 10.1021/jm060218h. [DOI] [PubMed] [Google Scholar]
  • 63.Butler SG, Meegan J. Recent developments in the design of anti-depressive therapies: targeting the serotonin transporter. Curr Med Chem. 2008;15:1737–1761. doi: 10.2174/092986708784872357. [DOI] [PubMed] [Google Scholar]
  • 64.Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ. Buspirone modulates basal and fluoxetine-stimulated dialysate levels of dopamine, noradrenaline and serotonin in the frontal cortex of freely moving rats: activation of serotonin1A receptors and blockade of α2-adrenergic receptors underlic its actions. Neuroscience. 1999;93:1251–1262. doi: 10.1016/s0306-4522(99)00211-0. [DOI] [PubMed] [Google Scholar]
  • 65.De Paulis T. Drug evaluation: vilazodone—a combined SSRI and 5-HT1A partial agonist for the treatment of depression. Idrugs. 2007;10:193–201. [PubMed] [Google Scholar]
  • 66.Jordan S, Chen R, Koprivica V, et al. In vitro profile of the antidepressant candidate OPC-14523 at rat and human 5-HT1A receptors. Eur J Pharmacol. 2005;517:165–173. doi: 10.1016/j.ejphar.2005.05.035. [DOI] [PubMed] [Google Scholar]
  • 67.Tottori K, Miwa T, Uwahodo Y, et al. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523. Neuropharmacology. 2001;41:976–988. doi: 10.1016/s0028-3908(01)00147-2. [DOI] [PubMed] [Google Scholar]
  • 68.Millan MJ, Marin P, Bockaert J. Mannoury 1a Cour C. Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci. 2008;29:454–64. doi: 10.1016/j.tips.2008.06.007. [DOI] [PubMed] [Google Scholar]
  • 69.Heightman TD, Gaster LM, Pardoe SL, et al. 8-Piperazinyl-2,3-dihydropyrrolo[3,2-g]isoquinolines: potent, selective, orally bio-available 5-HT1 receptor ligands. Bioorg Med Chem Lett. 2005;15:4370–4374. doi: 10.1016/j.bmcl.2005.06.042. [DOI] [PubMed] [Google Scholar]
  • 70.Ward SE, Eddershaw PJ, Scott CM, et al. Discovery of potent, orally bioavailable, selective 5-HT1A/B/D receptor antagonists. J Med Chem. 2008;51:2887–2890. doi: 10.1021/jm8001444. [DOI] [PubMed] [Google Scholar]
  • 71.Hughes ZA, Starr KR, Scott CM, et al. Simultaneous blockade of 5-HT1A/B receptors and 5-HT transporters results in acute increases in extracellular 5-HT in both rats and guinea pigs: in vivo characterization of the novel 5-HT1A/B receptor antagonist/5-HT transport inhibitor SB-649915-B. Psychopharmacology (Berl) 2007;192:121–133. doi: 10.1007/s00213-006-0691-x. [DOI] [PubMed] [Google Scholar]
  • 72.Starr KR, Price GW, Watson JM, et al. SB-649915-B, a novel 5-HT1A/B autoreceptor antagonist and serotonin reuptake inhibitor, is anxiolytic and displays fast onset activity in the rat social interaction test. Neuropsychopharmacology. 2007;32:2163–2172. doi: 10.1038/sj.npp.1301341. [DOI] [PubMed] [Google Scholar]
  • 73.Watson JM, Dawson LA. Characterization of the potent 5-HT1A/B receptor antagonist and serotonin reuptake inhibitor SB-649915: preclinical evidence for hastened onset of antidepressant/anxiolytic efficacy. CNS Drug Rev. 2007;13:206–223. doi: 10.1111/j.1527-3458.2007.00012.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Millan MJ, Gobert A, Roux S, et al. The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J Pharmacol Exp Ther. 2004;311:190–203. doi: 10.1124/jpet.104.069625. [DOI] [PubMed] [Google Scholar]
  • 75.King MV, Marsden CA, Fone KCF. A role of the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci. 2008;29:482–492. doi: 10.1016/j.tips.2008.07.001. [DOI] [PubMed] [Google Scholar]
  • 76.Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E. Effect of the selective 5-HT7 receptor antagonist SB269,970 in models of anxiety and depression. Neuropharmacology. 2006;51:578–586. doi: 10.1016/j.neuropharm.2006.04.017. [DOI] [PubMed] [Google Scholar]
  • 77.Wesołowska A, Tatarczyńska E, Nikiforuk A, Chojnacka-Wôjcik E. Enhancement of the anti-immobility action of antidepressant by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur J Pharmacol. 2007;555:43–47. doi: 10.1016/j.ejphar.2006.10.001. [DOI] [PubMed] [Google Scholar]
  • 78.Bonaventure P, Kelly L, Aluisio L, et al. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther. 2007;321:690–698. doi: 10.1124/jpet.107.119404. [DOI] [PubMed] [Google Scholar]
  • 79.Mnie-Filali O, Lambas-Senas L, Zimmer L, Haddjeri N. 5-HT7 receptor antagonists as a new class of antidepressants. Drug News Perspect. 2007;20:613–618. doi: 10.1358/dnp.2007.20.10.1181354. [DOI] [PubMed] [Google Scholar]
  • 80.Thomas DR, Melotto S, Massagrand M, et al. SB656,104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol. 2003;139:705–714. doi: 10.1038/sj.bjp.0705290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.McClung CA. Orcadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 2007;114:222–232. doi: 10.1016/j.pharmthera.2007.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Bunney JN, Potkin SG. Orcadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull. 2008;86:23–32. doi: 10.1093/bmb/ldn019. [DOI] [PubMed] [Google Scholar]
  • 83.Thomas DR. 5-HT5A receptors as a therapeutic target. Pharmacol Ther. 2006;111:707–714. doi: 10.1016/j.pharmthera.2005.12.006. [DOI] [PubMed] [Google Scholar]
  • 84.Thomas DR, Soffin EM, Roberts C, et al. SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4′-([(2-phenylethyl) amino]methyl)-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology. 2006;51:566–577. doi: 10.1016/j.neuropharm.2006.04.019. [DOI] [PubMed] [Google Scholar]
  • 85.Millan MJ. Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapic. 2005;60:441–460. doi: 10.2515/therapie:2005065. [DOI] [PubMed] [Google Scholar]
  • 86.Dekeyne A, Mannoury la Cour C, Gobert A, et al. S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology (Berl) 2008;199:549–568. doi: 10.1007/s00213-008-1177-9. [DOI] [PubMed] [Google Scholar]
  • 87.Cremers TI, Rea K, Bosker FJ, et al. Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology. 2007;32:1550–1557. doi: 10.1038/sj.npp.1301287. [DOI] [PubMed] [Google Scholar]
  • 88.Heisler LK, Pronchuk N, Nonogaki K, et al. Serotonin activates the hypothalamic-pituitary-adrenal axis via 5-HT2C receptor stimulation. J Neurosci. 2007;27:6956–6964. doi: 10.1523/JNEUROSCI.2584-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Heisler LK, Zhou L, Bajwa P, Hsu J, Tecott LH. Serotonin 5-HT2C receptors regulate anxiety-like behavior. Genes Brain Behav. 2007;6:491–496. doi: 10.1111/j.1601-183X.2007.00316.x. [DOI] [PubMed] [Google Scholar]
  • 90.Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol. 2003;70:83–244. doi: 10.1016/s0301-0082(03)00087-x. [DOI] [PubMed] [Google Scholar]
  • 91.Kantor S, Jakus R, Molnar E, et al. Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 [6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline] and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther. 2005;315:921–930. doi: 10.1124/jpet.105.086413. [DOI] [PubMed] [Google Scholar]
  • 92.Dekeyne A, Denorme B, Monneyron S, Millan MJ. Citalopram reduces social interaction in rats by activation of serotonin (5-HT)2C receptors. Neuropharmacology. 2000;39:1114–1117. doi: 10.1016/s0028-3908(99)00268-3. [DOI] [PubMed] [Google Scholar]
  • 93.Salchner P, Singewald N. 5-HT receptor subtypes involved in anxiogenic-like action and Fos response of acute fluoxetine treatment in rats. Psychopharmacology (Berl) 2006;185:282–288. doi: 10.1007/s00213-005-0247-5. [DOI] [PubMed] [Google Scholar]
  • 94.Dekeyne A, Mannoury la Cour C, Chanrion B, et al. S32212, a “dual” antagonist at α2-adrenoceptors (ARs) and 5-HT2C receptors: binding profile and functional action at G-protein-coupled receptors. Am Soc Neurosci Abstr. 2006;32:828.2–828.2. [Google Scholar]
  • 95.Gobert A, Dekeyne A, Brocco M, et al. S32212, a “dual” antagonist at α2-adrenoceptors (ARs) and 5-HT2C receptors: actions in behavioral and neurochemical models of potential antidepressant and pro-cognitive activity. Am Soc Neurosci Abstr. 2006;32:828.3–828.3. [Google Scholar]
  • 96.Rauggi R, Cassanelli A, Raone A, Tagliamonte A, Gambarana C. Study of mirtazapine antidepressant effects in rats. Int J Neuropsychopharmacol. 2005;8:369–379. doi: 10.1017/S1461145705005146. [DOI] [PubMed] [Google Scholar]
  • 97.Szegedi A, Schwertfeger N. Mirtazapine: a review of its clinical efficacy and tolerability. Expert Opin Pharmacother. 2005;6:631–641. doi: 10.1517/14656566.6.4.631. [DOI] [PubMed] [Google Scholar]
  • 98.Millan MJ, Gobert A, Rivet JM, et al. Mirtazapine enhances frontocortical dopaminergic and adrenergic, but not serotonergic, transmission by blockade of α2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000;12:1079–1095. doi: 10.1046/j.1460-9568.2000.00982.x. [DOI] [PubMed] [Google Scholar]
  • 99.Tam SW, Worcel M, Wyllic M. Yohimbine: a clinical review. Pharmacol Ther. 2001;91:215–243. doi: 10.1016/s0163-7258(01)00156-5. [DOI] [PubMed] [Google Scholar]
  • 100.Invemizzi RW, Garattini S. Role of presynaptic α2-adrenoceptors in antidepressant action: recent findings from microdialysis studies. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:819–827. doi: 10.1016/j.pnpbp.2004.05.026. [DOI] [PubMed] [Google Scholar]
  • 101.Lapiz MD, Morilak DA. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience. 2006;137:1039–1049. doi: 10.1016/j.neuroscience.2005.09.031. [DOI] [PubMed] [Google Scholar]
  • 102.Hemrick-Luecke SK, Evans DC. Comparison of the potency of MDL100,907 and SB242,084 in blocking 5-HT2 agonist-induced increases corticosterone: evidence for 5-HT2A mediation of HPA axis. Neuropharmacology. 2002;42:162–169. doi: 10.1016/s0028-3908(01)00166-6. [DOI] [PubMed] [Google Scholar]
  • 103.Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci. 2008;29:445–453. doi: 10.1016/j.tips.2008.06.006. [DOI] [PubMed] [Google Scholar]
  • 104.Fujiwara-Sawada M, Imanishi T, Yoshida A, Baba J. Possible involvement of peripheral 5-HT3 receptors in fluvoxamine-induced emesis in Suncus murinus. J Pharm Pharmacol. 2003;55:271–274. doi: 10.1211/002235702496. [DOI] [PubMed] [Google Scholar]
  • 105.Costall B, Naylor RJ. 5-HT3 receptors. Curr Drug Targets. 2004;3:27–37. doi: 10.2174/1568007043482624. [DOI] [PubMed] [Google Scholar]
  • 106.Harmer CJ, Reid CB, Ray MK, Goodwin GM, Cowen PJ. 5-HT3 antagonism abolishes the emotion potentiated startle effect in humans. Psychopharmacology (Berl) 2006;186:18–24. doi: 10.1007/s00213-006-0337-z. [DOI] [PubMed] [Google Scholar]
  • 107.Ramamoorthy R, Radhakrishnan M, Borah M. Antidepressant-like effects of 5-HT3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol. 2008;19:29–40. doi: 10.1097/FBP.0b013e3282f3cfd4. [DOI] [PubMed] [Google Scholar]
  • 108.Moore NA, Bang-Andersen B, Brennum LT, et al. Lu AA21004: a novel potential treatment for mood disorders. Eur Neuropsychopharmacol. 2008;18(Suppl 4):S321–S321. [Google Scholar]
  • 109.Millan MJ, Di Cara B, Dekeyne A, et al. Selective blockade of dopamine D3 versus D2 receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neuro-chemical and behavioural analysis. J Neurochem. 2007;100:1047–1061. doi: 10.1111/j.1471-4159.2006.04262.x. [DOI] [PubMed] [Google Scholar]
  • 110.Loiseau F, Millan MJ. Blockade of dopamine D3 receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D1 receptor agonists, but not of D2 antagonists. Eur Neuropsychopharmacol 2008 Sept 14 [Epub ahead of print]. [DOI] [PubMed]
  • 111.Norman TR, Burrows GD. Emerging treatments for major depression. Expert Rev Neurother. 2007;7:203–213. doi: 10.1586/14737175.7.2.203. [DOI] [PubMed] [Google Scholar]
  • 112.Stone EA, Quartermain D, Lin Y, Lehmann ML. Central α1-adrenergic system in behavioral activity and depression. Biochem Pharmacol. 2007;73:1063–1075. doi: 10.1016/j.bcp.2006.10.001. [DOI] [PubMed] [Google Scholar]
  • 113.Zhang HT, Huang Y, Mishler K, Roerig SC, O’Donnell JM. Interaction between the antidepressant-like behavioral effects of beta adrenergic agonists and the cyclic AMP PDE inhibitor rolipram in rats. Psychopharmacology (Berl) 2005;182:104–115. doi: 10.1007/s00213-005-0055-y. [DOI] [PubMed] [Google Scholar]
  • 114.Overstreet DH, Stemmelin J, Griebel G. Confirmation of antidepressant potential of the selective β3 adrenoceptor agonist amibegron in an animal model of depression. Pharmacol Biochem Behav. 2008;89:623–626. doi: 10.1016/j.pbb.2008.02.020. [DOI] [PubMed] [Google Scholar]
  • 115.Stemmelin J, Cohen C, Terranova JP, et al. Stimulation of the β3-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology. 2008;89:574–587. doi: 10.1038/sj.npp.1301424. [DOI] [PubMed] [Google Scholar]
  • 116.Maurel JL, Autin JM, Funes O, Newman-Tancredi A, Colpaert F, Vacher B. High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity. J Med Chem. 2007;50:5024–5033. doi: 10.1021/jm070714l. [DOI] [PubMed] [Google Scholar]
  • 117.Lucas G, Rymar VV, Du J, et al. Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007;55:712–725. doi: 10.1016/j.neuron.2007.07.041. [DOI] [PubMed] [Google Scholar]
  • 118.Svenningsson P, Tzavara ET, Qi H, et al. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci. 2007;27:4201–4209. doi: 10.1523/JNEUROSCI.3110-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Wesolowska A, Nikiforuk A. The selective 5-HT6 receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats. Eur J Pharmacol. 2008;582:88–93. doi: 10.1016/j.ejphar.2007.12.013. [DOI] [PubMed] [Google Scholar]
  • 120.Giaroni C, Canciani L, Zanetti E, et al. Effects of chronic desipramine treatment on α2-adrenoceptors and μ-opioid receptors in the guinea pig cortex and hippocampus. Eur J Pharmacol. 2008;579:116–125. doi: 10.1016/j.ejphar.2007.10.007. [DOI] [PubMed] [Google Scholar]
  • 121.Lapiz MD, Zhao Z, Bondi CO, O’Donnell JM, Morilak DA. Blockade of autoreceptor-mediated inhibition of norepinephrine release by atipamezole is maintained after chronic reuptake inhibition. Int J Neuropsychopharmacol. 2007;10:827–833. doi: 10.1017/S1461145707007651. [DOI] [PubMed] [Google Scholar]
  • 122.Sanacora G, Berman RM, Cappiello A, et al. Addition of the α2-antagonist yohimbine to fluoxetine: effects on rate of antidepressant response. Neuropsychopharmacology. 2004;29:1166–1171. doi: 10.1038/sj.npp.1300418. [DOI] [PubMed] [Google Scholar]
  • 123.Gobert A, Di Cara B, Cistarelli L, Millan MJ. Piribedil enhances frontocortical and hippocampal release of acetylcholine in freely moving rats by blockade of α2A-adrenoceptors: a dialysis comparison to talipexole and quinelorane in the absence of acetyl-cholinesterase inhibitors. J Pharmacol Exp Ther. 2003;305:338–346. doi: 10.1124/jpet.102.046383. [DOI] [PubMed] [Google Scholar]
  • 124.Cordi AA, Berque-Bestel I, Persigand T, et al. Potential antidepressants display combined α2-adrenoceptor antagonist and monoamine uptake inhibitor properties. J Med Chem. 2001;44:787–805. doi: 10.1021/jm001040g. [DOI] [PubMed] [Google Scholar]
  • 125.Andrés JI, Alcazar J, Alonso JM, et al. Tricyclic isoxazolines: identification of R226161 as a new antidepressant that combines potent serotonin reuptake inhibition and α2-adrenoceptor antagonism. Bioorg Med Chem. 2007;15:3649–3660. doi: 10.1016/j.bmc.2007.03.053. [DOI] [PubMed] [Google Scholar]
  • 126.Gobert A, Cussac D, Lejeune F, et al. The novel antidepressant, S35966, is a mixed serotonin and noradrenaline reuptake inhibitor and an antagonist at α2-adrenoceptors. Eur Neuropsychopharmacol. 2002;12(Suppl 3):S248–S248. [Google Scholar]
  • 127.Pérez-García C, Morales L, Cano MV, Sancho I, Alguacil LF. Effects of histamine H3 receptor ligands in experimental models of anxiety and depression. Psychopharmacology (Berl) 1999;142:215–220. doi: 10.1007/s002130050882. [DOI] [PubMed] [Google Scholar]
  • 128.Passani MB, Lin JS, Hancock A, Crochet S, Blandina P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci. 2004;25:618–625. doi: 10.1016/j.tips.2004.10.003. [DOI] [PubMed] [Google Scholar]
  • 129.Medhurst AD, Atkins AR, Beresford IJ, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321:1032–1045. doi: 10.1124/jpet.107.120311. [DOI] [PubMed] [Google Scholar]
  • 130.Keith JM, Gomez LA, Barbier AJ, et al. Pyrrolidino-tetrahydroisoquinolines bearing pendant heterocycles as potent dual H3 antagonist and serotonin transporter inhibitors. Bioorg Med Chem Lett. 2007;17:4374–4377. doi: 10.1016/j.bmcl.2007.03.043. [DOI] [PubMed] [Google Scholar]
  • 131.Barbier AJ, Aluisio L, Lord B, et al. Pharmacological characterization of JNJ-28583867, a histamine H3 receptor antagonist and serotonin reuptake inhibitor. Eur J Pharmacol. 2007;576:43–54. doi: 10.1016/j.ejphar.2007.08.009. [DOI] [PubMed] [Google Scholar]
  • 132.Hancock AA, Brune ME. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin Invest Drugs. 2005;14:223–241. doi: 10.1517/13543784.14.3.223. [DOI] [PubMed] [Google Scholar]
  • 133.Araki H, Suemaru K, Gomita Y. Neuronal nicotinic receptor and psychiatric disorders: functional and behavioral effects of nicotine. Jpn J Pharmacol. 2002;88:133–138. doi: 10.1254/jjp.88.133. [DOI] [PubMed] [Google Scholar]
  • 134.Rabenstein RL, Caldarone BJ, Picciotto MR. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl) 2006;189:395–401. doi: 10.1007/s00213-006-0568-z. [DOI] [PubMed] [Google Scholar]
  • 135.Mineur YS, Somenzi O, Picciotto MR. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology. 2007;52:1256–1262. doi: 10.1016/j.neuropharm.2007.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Andreasen JT, Olsen GM, Wiborg O, Redrobe JP. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacology 2008 June 26 [Epub ahead of print]. [DOI] [PubMed]
  • 137.George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol. 2008;28:340–344. doi: 10.1097/JCP.0b013e318172b49e. [DOI] [PubMed] [Google Scholar]
  • 138.Abe Y, Aoyagi A, Hara T, et al. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer’s disease. J Pharmacol Sci. 2003;93:95–105. doi: 10.1254/jphs.93.95. [DOI] [PubMed] [Google Scholar]
  • 139.Toda N, Tago K, Marumoto S, et al. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease. Bioorg Med Chem. 2003;11:4389–4415. doi: 10.1016/s0968-0896(03)00452-8. [DOI] [PubMed] [Google Scholar]
  • 140.Decker M. Recent advances in the development of hybrid molecules/designed multiple compounds with antiamnesic properties. Mini Rev Med Chem. 2007;7:221–229. doi: 10.2174/138955707780059817. [DOI] [PubMed] [Google Scholar]
  • 141.Froestl W, Gallagher M, Jenkins H, et al. SGS742: the first GABAB receptor antagonist in clinical trials. Biochem Pharmacol. 2004;68:1479–1487. doi: 10.1016/j.bcp.2004.07.030. [DOI] [PubMed] [Google Scholar]
  • 142.Slattery DA, Cryan JF. The role of GABAB receptors in depression and antidepressant-related behavioural responses. Drug Dev Res. 2006;67:477–494. [Google Scholar]
  • 143.Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety. 2007;24:495–517. doi: 10.1002/da.20262. [DOI] [PubMed] [Google Scholar]
  • 144.Mannoury la Cour C, Hanoun N, Melfort M, et al. GABAB receptors in 5-HT transporter- and 5-HT1A knock-out mice: evidence of a transduction pathway shared with 5-HT1A receptors. J Neurochem. 2004;89:886–896. doi: 10.1111/j.1471-4159.2004.02367.x. [DOI] [PubMed] [Google Scholar]
  • 145.Cornelisse LN, Van der Harst JE, Lodder JC, et al. Reduced 5-HT1A and GABAB receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol. 2007;98:196–204. doi: 10.1152/jn.00109.2007. [DOI] [PubMed] [Google Scholar]
  • 146.Millan MJ. N-methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005;179:30–53. doi: 10.1007/s00213-005-2199-1. [DOI] [PubMed] [Google Scholar]
  • 147.Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci. 2003;1003:292–308. doi: 10.1196/annals.1300.018. [DOI] [PubMed] [Google Scholar]
  • 148.Black MD. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits: a review of preclinical data. Psychopharmacology (Berl) 2005;179:154–163. doi: 10.1007/s00213-004-2065-6. [DOI] [PubMed] [Google Scholar]
  • 149.Linden AL, Schoepp DD. Metabotropic glutamate receptor targets for neuropsychiatric disorders. Drug Discov Today Ther Strateg. 2006;3:507–517. [Google Scholar]
  • 150.De Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–475. doi: 10.1038/nrn1683. [DOI] [PubMed] [Google Scholar]
  • 151.Umegaki H, Yamamoto A, Suzuki Y, Iguchi A. Stimulation of the hippocampal glutamate receptor systems induces stress-like responses. Neuro Endocrinol Lett. 2006;27:339–343. [PubMed] [Google Scholar]
  • 152.Ziegler DR, Cullinan WE, Herman JP. Organization and regulation of paraventricular nucleus glutamate signalling systems: N- methyl-d-aspartate receptors. J Comp Neurol. 2005;484:43–56. doi: 10.1002/cne.20445. [DOI] [PubMed] [Google Scholar]
  • 153.Rogoz Z, Skuza G, Maj J, Danysz W. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology. 2002;42:1024–1030. doi: 10.1016/s0028-3908(02)00055-2. [DOI] [PubMed] [Google Scholar]
  • 154.Zarate CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–864. doi: 10.1001/archpsyc.63.8.856. [DOI] [PubMed] [Google Scholar]
  • 155.Maeng S, Zarate CA, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–352. doi: 10.1016/j.biopsych.2007.05.028. [DOI] [PubMed] [Google Scholar]
  • 156.Parsons CG, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system: too little activation is bad, too much is even worse. Neuropharmacology. 2007;53:699–723. doi: 10.1016/j.neuropharm.2007.07.013. [DOI] [PubMed] [Google Scholar]
  • 157.Wilcock GK. Memantine for the treatment of dementia. Lancet Neurol. 2003;2:503–505. doi: 10.1016/s1474-4422(03)00486-1. [DOI] [PubMed] [Google Scholar]
  • 158.Karivajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007;6:782–792. doi: 10.1016/S1474-4422(07)70195-3. [DOI] [PubMed] [Google Scholar]
  • 159.Almeida RC, Felisbino CS, López MG, Rodrigues AL, Gabilan NH. Evidence for the involvement of l-arginine-nitric oxidecyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav Brain Res. 2006;168:318–322. doi: 10.1016/j.bbr.2005.11.023. [DOI] [PubMed] [Google Scholar]
  • 160.Zarate CA, Singh JB, Quiroz JA, et al. A double-blind, placebo-controlled study of memantine in depression. Am J Psychiatry. 2006;163:153–155. doi: 10.1176/appi.ajp.163.1.153. [DOI] [PubMed] [Google Scholar]
  • 161.Muhonen LH, Lonnqvist J, Juva K, Alho H. Double-blind, randomized comparison of memantine and escitalopram for the treatment of major depressive disorder comorbid with alcohol dependence. J Clin Psychiatry. 2008;69:392–399. doi: 10.4088/jcp.v69n0308. [DOI] [PubMed] [Google Scholar]
  • 162.Bai F, Bergeron M, Nelson DL. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology. 2003;44:1013–1021. doi: 10.1016/s0028-3908(03)00104-7. [DOI] [PubMed] [Google Scholar]
  • 163.Li X, Witkin JM, Need AB, Skolnick P. Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol. 2003;23:419–430. doi: 10.1023/a:1023648923447. [DOI] [PubMed] [Google Scholar]
  • 164.Arai AC, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8:583–602. doi: 10.2174/138945007780618490. [DOI] [PubMed] [Google Scholar]
  • 165.Moriya T, Ikeda M, Teshima K, et al. Facilitation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents. J Neurochem. 2003;85:978–987. doi: 10.1046/j.1471-4159.2003.01758.x. [DOI] [PubMed] [Google Scholar]
  • 166.Gould TD, O’Donnell KC, Dow ER, Du J, Chen G, Manji HK. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology. 2008;54:577–587. doi: 10.1016/j.neuropharm.2007.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev. 2001;25:117–142. doi: 10.1016/s0149-7634(01)00002-1. [DOI] [PubMed] [Google Scholar]
  • 168.Matrisciano F, Panaccione I, Zusso M, et al. Group-II metabotropic glutamate receptor ligands as adjunctive drugs in the treatment of depression: a new strategy to shorten the latency of antidepressant medication? Mol Psychiatry. 2007;12:704–706. doi: 10.1038/sj.mp.4002005. [DOI] [PubMed] [Google Scholar]
  • 169.Brocco M, Dekeyne A, Mannoury la Cour C, et al. Cellular and behavioural profile of the novel, selective neurokinin, receptor antagonist, vestipitant: a comparison to other agents. Eur Neuropsychopharmacol. 2008;18:729–750. doi: 10.1016/j.euroneuro.2008.06.002. [DOI] [PubMed] [Google Scholar]
  • 170.Czéh B, Fuchs E, Simon M. NK, receptor antagonists under investigation for the treatment of affective disorders. Expert Opin Investig Drugs. 2006;15:479–486. doi: 10.1517/13543784.15.5.479. [DOI] [PubMed] [Google Scholar]
  • 171.Kramer MS, Winokur A, Kelsey J, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology. 2004;29:385–392. doi: 10.1038/sj.npp.1300260. [DOI] [PubMed] [Google Scholar]
  • 172.Keller M, Montgomery S, Ball W, et al. Lack of efficacy of the substance P (neurokinin, receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry. 2006;59:216–223. doi: 10.1016/j.biopsych.2005.07.013. [DOI] [PubMed] [Google Scholar]
  • 173.Millan MJ, Lejeune F, De Nanteuil G, Gobert A. Selective blockade of NK, receptors facilitates the activity of adrenergic pathways projecting to frontal cortex and dorsal hippocampus in rats. J Neurochem. 2001;76:1949–1954. doi: 10.1046/j.1471-4159.2001.00211.x. [DOI] [PubMed] [Google Scholar]
  • 174.Lejeune F, Gobert A, Millan MJ. The selective NK, antagonist, GR205,171, stereospecifically enhances mesocortical dopaminergic transmission in the rat: a combined dialysis and electrophysiological study. Brain Res. 2002;935:134–139. doi: 10.1016/s0006-8993(02)02476-9. [DOI] [PubMed] [Google Scholar]
  • 175.Gobbi G, Cassano T, Radja F, et al. Neurokinin 1 receptor antagonism requires norepinephrine to increase serotonin function. Eur Neuropsychopharmacol. 2007;17:328–338. doi: 10.1016/j.euroneuro.2006.07.004. [DOI] [PubMed] [Google Scholar]
  • 176.Guiard BP, Guilloux JP, Reperant C, Hunt SP, Toth M, Gardier AM. Substance P neurokinin 1 receptor activation within the dorsal raphe nucleus controls serotonin release in the mouse frontal cortex. Mol Pharmacol. 2007;72:1411–1418. doi: 10.1124/mol.107.040113. [DOI] [PubMed] [Google Scholar]
  • 177.Gobert A, Brocco M, Dekeyne A, et al. Neurokinin, antagonists potentiate antidepressant properties of serotonin reuptake inhibitors, yet blunt their anxiogenic actions: a neurochemical, electro-physiological, and behavioral characterization. Neuropsychopharmacology 2008 Oct. 1 [Epub ahead of print]. [DOI] [PubMed]
  • 178.Chenu F, Guiard BP, Bourin M, Gardier AM. Antidepressant-like activity of selective serotonin reuptake inhibitors combined with a NK, receptor antagonist in the mouse forced swimming test. Behav Brain Res. 2006;172:256–263. doi: 10.1016/j.bbr.2006.05.011. [DOI] [PubMed] [Google Scholar]
  • 179.Millan MJ, Girardon S, Mullot J, Brocco M, Dekeyne A. Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin1 (NK1) receptor antagonists. Neuropharmacology. 2002;42:677–684. doi: 10.1016/s0028-3908(02)00021-7. [DOI] [PubMed] [Google Scholar]
  • 180.Gannon RL, Millan MJ. The selective tachykinin neurokinin 1 (NK1) receptor antagonist, GR205,171, stereospecifically inhibits light-induced phase advances of hamster circadian activity rhythms. Eur J Pharmacol. 2005;527:86–93. doi: 10.1016/j.ejphar.2005.10.012. [DOI] [PubMed] [Google Scholar]
  • 181.Gannon RL, Millan MJ. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Psychopharmacology (Berl) 2007;195:325–332. doi: 10.1007/s00213-007-0903-z. [DOI] [PubMed] [Google Scholar]
  • 182.Patel L, Lindley C. Aprepitant: a novel NKl-receptor antagonist. Expert Opin Pharmacother. 2003;4:2279–2296. doi: 10.1517/14656566.4.12.2279. [DOI] [PubMed] [Google Scholar]
  • 183.Ryckmans T, Balançon L, Berton O, et al. First dual NK, antagonists-serotonin reuptake inhibitors: synthesis and SAR of a new class of potential antidepressants. Bioorg Med Chem Lett. 2002;12:261–264. doi: 10.1016/s0960-894x(01)00727-2. [DOI] [PubMed] [Google Scholar]
  • 184.Louis C, Stemmelin J, Boulay D, Bergis O, Cohen C, Griebel G. Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent models. Pharmacol Biochem Behav. 2008;89:36–45. doi: 10.1016/j.pbb.2007.10.020. [DOI] [PubMed] [Google Scholar]
  • 185.Micale V, Tamburella A, Leggio GM, Mazzola C, Li VV, Drago F. Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacol Biochem Behav. 2008;90:463–469. doi: 10.1016/j.pbb.2008.04.003. [DOI] [PubMed] [Google Scholar]
  • 186.Serradeil-Le Gal C, Wagnon J, Tonnerre B, et al. An overview of SSR149415, a selective nonpeptide vasopressin V1b receptor antagonist for the treatment of stress related disorders. CNS Drug Rev. 2005;11:53–68. doi: 10.1111/j.1527-3458.2005.tb00035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Landgraf R. The involvement of the vasopressin system in stress-related disorders. CNS Neurol Disord Drug Targets. 2006;5:167–188. doi: 10.2174/187152706776359664. [DOI] [PubMed] [Google Scholar]
  • 188.Hodgson RA, Higgins GA, Guthrie DH, et al. Comparison of the Vlb antagonist, SSR149415, and the CRF1 antagonist, CP154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav. 2007;86:431–440. doi: 10.1016/j.pbb.2006.12.021. [DOI] [PubMed] [Google Scholar]
  • 189.Ogren SO, Kuteeva E, Hokfelt T, Kehr J. Galanin receptor antagonists: a potential novel pharmacological treatment for mood disorders. CNS Drugs. 2006;20:633–654. doi: 10.2165/00023210-200620080-00003. [DOI] [PubMed] [Google Scholar]
  • 190.Millan MJ, Gobert A, Panayi F, et al. The melanin-concentrating hormone] receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats. Int J Neuropsychopharmacol. 2008;11:1105–1122. doi: 10.1017/S1461145708008894. [DOI] [PubMed] [Google Scholar]
  • 191.Kehne JH. The CRF1 receptor, a novel target for the treatment of depression, anxiety, and stress-related disorders. CNS Neurol Disord Drug Targets. 2007;6:163–182. doi: 10.2174/187152707780619344. [DOI] [PubMed] [Google Scholar]
  • 192.Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165:617–620. doi: 10.1176/appi.ajp.2008.07071199. [DOI] [PubMed] [Google Scholar]
  • 193.Xi N. The MC4 receptor as a drug discovery target. Drugs Fut. 2006;31:163–173. [Google Scholar]
  • 194.Chaki S, Oshida Y, Ogawa S, et al. MCL0042: a nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity. Pharmacol Biochem Behav. 2005;82:621–626. doi: 10.1016/j.pbb.2005.11.001. [DOI] [PubMed] [Google Scholar]
  • 195.Delia Zuana O, Sadlo M, Germain M, Félétou M, Chamorro S. Tisserand F. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int J Obes Relat Metab Disord. 2001;25:84–94. doi: 10.1038/sj.ijo.0801472. [DOI] [PubMed] [Google Scholar]
  • 196.Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry. 2002;7:254–275. doi: 10.1038/sj.mp.4001032. [DOI] [PubMed] [Google Scholar]
  • 197.DeBattista C, Belanoff J. The use of mifepristone in the treatment of neuropsychiatric disorders. Trends Endocrinol Metab. 2006;17:117–121. doi: 10.1016/j.tem.2006.02.006. [DOI] [PubMed] [Google Scholar]
  • 198.Schick M, Kiefer F, Kämpf P, Arlt J, Wiedemann K, Jahn H. Cell-tumover in the gyrus dentatus in mice is enhanced by metyrapone treatment. Pharmacopsychiatry. 2001;34:198–198. [Google Scholar]
  • 199.Rogoz Z, Skuza G, Wojcikowski J, Daniel WA. Effects of combined treatment with imipramine and metyrapone in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Pol J Pharmacol. 2003;55:993–999. [PubMed] [Google Scholar]
  • 200.Rogóz Z, Skuza G, Wojcikowski J, et al. Effect of metyrapone supplementation on imipramine therapy in patients with treatment-resistant unipolar depression. Pol J Pharmacol. 2004;56:849–855. [PubMed] [Google Scholar]
  • 201.Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedermann K. Metyrapone as additive treatment in major depression. Arch Gen Psychiatry. 2004;61:1235–1244. doi: 10.1001/archpsyc.61.12.1235. [DOI] [PubMed] [Google Scholar]
  • 202.Gallagher P, Malik N, Newham J, Young AH, Ferner IN, Mackin P. Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst Rev 2008;(1):CD005168. [DOI] [PubMed]
  • 203.Oomen CA, Mayer JL, de Kloet ER, Joëls M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci. 2007;26:3395–3401. doi: 10.1111/j.1460-9568.2007.05972.x. [DOI] [PubMed] [Google Scholar]
  • 204.Wu LM, Han H, Wang QN, et al. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology. 2007;32:2500–2510. doi: 10.1038/sj.npp.1301386. [DOI] [PubMed] [Google Scholar]
  • 205.Ago Y, Arikawa S, Yata M, et al. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 2008 Aug. 30 [Epub ahead of print]. [DOI] [PubMed]
  • 206.Schatzberg AF, Lindley S. Glucocorticoid antagonists in neuropsychiatric disorders. Eur J Pharmacol. 2008;583:358–364. doi: 10.1016/j.ejphar.2008.01.001. [DOI] [PubMed] [Google Scholar]
  • 207.Clark JA, Pai LY, Flick RB, Rohrer SP. Differential hormonal regulation of tryptophan hydroxylase-2 mRNA in the murine dorsal raphe nucleus. Biol Psychiatry. 2005;57:943–946. doi: 10.1016/j.biopsych.2005.01.013. [DOI] [PubMed] [Google Scholar]
  • 208.Johnson DA, Grant EJ, Ingram CD, Gartside SE. Glucocorticoid receptor antagonists hasten and augment neurochemical responses to a selective serotonin reuptake inhibitor antidepressant. Biol Psychiatry. 2007;62:1228–1235. doi: 10.1016/j.biopsych.2007.05.003. [DOI] [PubMed] [Google Scholar]
  • 209.Zupancic M, Guilleminault C. Agomelatine. CNS Drugs. 2006;20:981–992. doi: 10.2165/00023210-200620120-00003. [DOI] [PubMed] [Google Scholar]
  • 210.Ghosh A, Hellewell JSE. A review of the efficacy and tolerability of agomelatine in the treatment of major depression. Expert Opin Investig Drugs. 2007;16:1999–2004. doi: 10.1517/13543784.16.12.1999. [DOI] [PubMed] [Google Scholar]
  • 211.Lam RW. Addressing circadian rhythm disturbances in depressed patients. J Psychopharmacology. 2008;22:13–18. doi: 10.1177/0269881108092591. [DOI] [PubMed] [Google Scholar]
  • 212.Srinivasan V, Smits M, Spence W, et al. Melatonin in mood disorders. World J Biol Psychiatry. 2006;7:138–151. doi: 10.1080/15622970600571822. [DOI] [PubMed] [Google Scholar]
  • 213.Lemoine P, Nir T, Laudon M, Zisapel N. Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res. 2007;16:372–380. doi: 10.1111/j.1365-2869.2007.00613.x. [DOI] [PubMed] [Google Scholar]
  • 214.Weil ZM, Hotchkiss AK, Gatien ML, Pieke-Dahl S, Nelson RJ. Melatonin receptor (MT1) knockout mice display depression-like behaviors and deficits in sensorimotor gating. Brain Res Bull. 2006;68:425–429. doi: 10.1016/j.brainresbull.2005.09.016. [DOI] [PubMed] [Google Scholar]
  • 215.Millan MJ, Brocco Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role or 5-HT2C receptor blockade. Psychopharmacology (Berl) 2005;177:448–458. doi: 10.1007/s00213-004-1962-z. [DOI] [PubMed] [Google Scholar]
  • 216.Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-HT2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003;306:954–964. doi: 10.1124/jpet.103.051797. [DOI] [PubMed] [Google Scholar]
  • 217.Banasr M, Sounder A, Hery M, Mocaër E, Daszuta A. Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry. 2006;59:1087–1096. doi: 10.1016/j.biopsych.2005.11.025. [DOI] [PubMed] [Google Scholar]
  • 218.Kennedy SH, Emsley R. Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. Eur Neuropsychopharmacol. 2006;16:93–100. doi: 10.1016/j.euroneuro.2005.09.002. [DOI] [PubMed] [Google Scholar]
  • 219.Kennedy SH, Rizvi S, Fulton K, Rasmussen J. A double-blind comparison of sexual functioning, antidepressant efficacy, and tolerability between agomelatine and venlafaxine XR. J Clin Psychopharmacol. 2008;28:329–333. doi: 10.1097/JCP.0b013e318172b48c. [DOI] [PubMed] [Google Scholar]
  • 220.Chenu F, Bourin M. Potentiation of antidepressant-like activity with lithium: mechanism involved. Curr Drug Targets. 2006;7:159–163. doi: 10.2174/138945006775515392. [DOI] [PubMed] [Google Scholar]
  • 221.Crossley NA, Bauer M. Acceleration and augmentation of anti-depressants with lithium for depressive disorders: two meta-analyses of randomized, placebo-controlled trials. J Clin Psychiatry. 2007;68:935–940. doi: 10.4088/jcp.v68n0617. [DOI] [PubMed] [Google Scholar]
  • 222.Carbonell L, Cuffi ML, Forn J. Effect of chronic lithium treatment on the turnover of α2-adrenoceptors after chemical inactivation in rats. Eur Neuropsychopharmacol. 2004;14:497–502. doi: 10.1016/j.euroneuro.2004.02.001. [DOI] [PubMed] [Google Scholar]
  • 223.Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology. 2005;30:1223–1237. doi: 10.1038/sj.npp.1300731. [DOI] [PubMed] [Google Scholar]
  • 224.Jope RS, Roh MS. Glycogen synthase kinase-3 (GSK-3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets. 2006;7:1421–1434. doi: 10.2174/1389450110607011421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Rowe MK, Wiest C, Chuang DM. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev. 2007;31:920–931. doi: 10.1016/j.neubiorev.2007.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. In vivo regulation of glycogen synthase kmase-3β (GSK-3β) by serotonergic activity in mouse brain. Neuropsychopharmacology. 2004;29:1426–1431. doi: 10.1038/sj.npp.1300439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Nowak G, Siwek M, Dudek D, Zieba A, Pilc A. Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol. 2003;55:1143–1147. [PubMed] [Google Scholar]
  • 228.Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H. Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on β-catenin in mouse hippocampus. Biol Psychiatry. 2004;55:781–784. doi: 10.1016/j.biopsych.2004.01.008. [DOI] [PubMed] [Google Scholar]
  • 229.Rosa AO, Kaster MP, Binfaré RW, et al. Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1549–1556. doi: 10.1016/j.pnpbp.2008.05.020. [DOI] [PubMed] [Google Scholar]
  • 230.Ghavami A, Hirst WD, Novak TJ. Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit? Drugs R D. 2006;7:63–71. doi: 10.2165/00126839-200607020-00001. [DOI] [PubMed] [Google Scholar]
  • 231.Zhang HT, Huang Y, Masood A, et al. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B) Neuropsychopharmacology. 2008;33:1611–1623. doi: 10.1038/sj.npp.1301537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Zhang HT, Zhao Y, Huang Y, Dorairaj NR, Chandler LJ, O’Donnell JM. Inhibition of PDE-4 reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CAI subregion of the rat hippocampus. Neuropsychopharmacology. 2004;29:1432–1439. doi: 10.1038/sj.npp.1300440. [DOI] [PubMed] [Google Scholar]
  • 233.Millan MJ. The role of monoamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol. 2004;500:371–384. doi: 10.1016/j.ejphar.2004.07.038. [DOI] [PubMed] [Google Scholar]
  • 234.Chanrion B, Mannoury la Cour C, Bertaso F, et al. Physical interaction between serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of activity. Proc Natl Acad Sci U S A. 2007;104:8119–8124. doi: 10.1073/pnas.0610964104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell. 2007;131:596–610. doi: 10.1016/j.cell.2007.08.036. [DOI] [PubMed] [Google Scholar]
  • 236.Martina M, Turcotte MEB, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol. 2007;578(1):143–157. doi: 10.1113/jphysiol.2006.116178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Wang J, Mack AL, Coop A, Matsumoto RR. Novel sigma (σ) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol. 2007;17:708–716. doi: 10.1016/j.euroneuro.2007.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Paolini GV, Shapland RHB, van Hoom WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nat Biotechnol. 2006;24:805–815. doi: 10.1038/nbt1228. [DOI] [PubMed] [Google Scholar]
  • 239.Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–266. doi: 10.1126/science.1158140. [DOI] [PubMed] [Google Scholar]
  • 240.Hellerstein MK. Exploiting complexity and the robustness of network architecture for drug discovery. J Pharmacol Exp Ther. 2008;325:1–9. doi: 10.1124/jpet.107.131276. [DOI] [PubMed] [Google Scholar]
  • 241.Evrard DA. Recent strategies for the development of new antidepressant drugs. Annu Rep Med Chem. 2006;41:24–37. [Google Scholar]
  • 242.Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Structural Biol. 2006;16:127–136. doi: 10.1016/j.sbi.2006.01.013. [DOI] [PubMed] [Google Scholar]
  • 243.Yeh P, Tschumi AI, Kishony R. Functional classification of drugs by properties of their pairwise interactions. Nat Genet. 2006;38:489–494. doi: 10.1038/ng1755. [DOI] [PubMed] [Google Scholar]
  • 244.Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drugtarget network. Nat Biotechnol. 2007;25:1119–1126. doi: 10.1038/nbt1338. [DOI] [PubMed] [Google Scholar]
  • 245.Keiser MJ, Roth BL, Armbruster BN, Emsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25:197–206. doi: 10.1038/nbt1284. [DOI] [PubMed] [Google Scholar]
  • 246.Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R. Novel paradigms for drug discovery: computational multi-target screening. Trends Pharmacol Sci. 2008;29:62–71. doi: 10.1016/j.tips.2007.11.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Kwak EL, Clark JW, Chabner B. Targeted agents: the rules of combination. Clin Cancer Res. 2007;13:5232–5237. doi: 10.1158/1078-0432.CCR-07-1385. [DOI] [PubMed] [Google Scholar]
  • 248.Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34–42. doi: 10.1016/j.drudis.2006.11.008. [DOI] [PubMed] [Google Scholar]
  • 249.Newman MEJ. The structure and function of complex networks. SIAM Rev. 2003;45:167–256. [Google Scholar]
  • 250.Spoms O. Network analysis, complexity, and brain function. Complexity. 2003;8:56–60. [Google Scholar]
  • 251.Csete M, Doyle J. Bow ties, metabolism and disease. Trends Biotechnol. 2004;22:446–450. doi: 10.1016/j.tibtech.2004.07.007. [DOI] [PubMed] [Google Scholar]
  • 252.Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006;26:63–72. doi: 10.1523/JNEUROSCI.3874-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006;87:60–66. doi: 10.1016/j.schres.2006.06.028. [DOI] [PubMed] [Google Scholar]
  • 254.Araujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov. 2007;6:871–880. doi: 10.1038/nrd2381. [DOI] [PubMed] [Google Scholar]
  • 255.He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17:2407–2419. doi: 10.1093/cercor/bhl149. [DOI] [PubMed] [Google Scholar]
  • 256.Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18:644–652. doi: 10.1101/gr.071852.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.May RM. Network structure and biology of populations. Trends Ecol Evol. 2006;21:394–399. doi: 10.1016/j.tree.2006.03.013. [DOI] [PubMed] [Google Scholar]
  • 258.Proulx SR, Promislow DEL, Phillips PC. Network thinking in ecology and evolution. Trends Ecol Evol. 2005;20:345–353. doi: 10.1016/j.tree.2005.04.004. [DOI] [PubMed] [Google Scholar]
  • 259.Schrattenholz A, Soskic V. What does systems biology mean for drug development? Curr Med Chem. 2008;15:1520–1528. doi: 10.2174/092986708784638843. [DOI] [PubMed] [Google Scholar]
  • 260.Fujisawa S, Matsuki N, Ikegaya Y. Single neurons can induce phase transitions of cortical recurrent networks with multiple internal states. Cereb Cortex. 2006;16:639–654. doi: 10.1093/cercor/bhj010. [DOI] [PubMed] [Google Scholar]
  • 261.Kaiser M, Martin R, Andras P, Young MP. Simulation of robustness against lesions of cortical networks. Eur J Neurosci. 2007;25:3185–3192. doi: 10.1111/j.1460-9568.2007.05574.x. [DOI] [PubMed] [Google Scholar]
  • 262.Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. 2007;17:92–99. doi: 10.1093/cercor/bhj127. [DOI] [PubMed] [Google Scholar]
  • 263.Szalay MS, Kovacs IA, Korcsmáros T, Böde C, Csermely P. Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett. 2007;581:3675–3680. doi: 10.1016/j.febslet.2007.03.083. [DOI] [PubMed] [Google Scholar]
  • 264.Lawson K. Pharmacological treatments of fibromyalgia: do complex conditions need complex therapies? Drug Discov Today. 2008;13:333–340. doi: 10.1016/j.drudis.2008.01.004. [DOI] [PubMed] [Google Scholar]
  • 265.Lin D, Mok H, Yatham LN. Polytherapy in bipolar disorder. CNS Drugs. 2006;20:29–42. doi: 10.2165/00023210-200620010-00003. [DOI] [PubMed] [Google Scholar]
  • 266.Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective-neurorescue drugs for Parkinson’s disease. Future Neurol. 2007;2:411–423. doi: 10.1016/S1353-8020(08)70017-8. [DOI] [PubMed] [Google Scholar]
  • 267.Pinnen F, Cacciatore I, Comacchia C, et al. Synthesis and study of l-dopa-glutathione codrugs as new anti-Parkinson agents with free radical scavenging properties. J Med Chem. 2007;50:2506–2515. doi: 10.1021/jm070037v. [DOI] [PubMed] [Google Scholar]
  • 268.Bolognesi ML, Cavalli A, Valgimigli L, et al. Multi-target-directed drug design strategy: from a dual binding site acetylcho-linesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem. 2007;50:6446–6449. doi: 10.1021/jm701225u. [DOI] [PubMed] [Google Scholar]
  • 269.Mandel S, Amit T, Bar-Am O, Youdim MBH. Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid processing regulatory activities as therapeutic agents. Prog Neurobiol. 2007;82:348–360. doi: 10.1016/j.pneurobio.2007.06.001. [DOI] [PubMed] [Google Scholar]
  • 270.Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet. 2008;372:207–215. doi: 10.1016/S0140-6736(08)61074-0. [DOI] [PubMed] [Google Scholar]
  • 271.Piazzi L, Cavalli A, Colizzi F, et al. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett. 2008;18:423–426. doi: 10.1016/j.bmcl.2007.09.100. [DOI] [PubMed] [Google Scholar]
  • 272.Araujo RP, Doran C, Liotta LA, Petricoin EF. Network-targeted combination therapy: a new concept in cancer treatment. Drug Discov Today Ther Strateg. 2004;1:425–433. [Google Scholar]
  • 273.Schenone S, Manetti F, Botta M. Last findings on dual inhibitors of Abl and Src tyrosine-kinases. Mini Rev Med Chem. 2007;7:191–201. doi: 10.2174/138955707779802598. [DOI] [PubMed] [Google Scholar]
  • 274.Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem. 2008;15:422–432. doi: 10.2174/092986708783503212. [DOI] [PubMed] [Google Scholar]
  • 275.López-Muñoz F, Alamo C, Rubio G, García-García P, Pardo A. Reboxetine combination in treatment-resistant depression to selective serotonin reuptake inhibitors. Pharmacopsychiatry. 2007;40:14–19. doi: 10.1055/s-2007-958523. [DOI] [PubMed] [Google Scholar]
  • 276.Plenge P, Gether U, Rasmussen SG. Allosteric effects of R- and S-citalopram on human 5-HT transporter: evidence for distinct high- and low-affinity binding sites. Eur J Pharmacol. 2007;567:1–9. doi: 10.1016/j.ejphar.2007.03.055. [DOI] [PubMed] [Google Scholar]
  • 277.Höschl C, Svestka J. Escitalopram for the treatment of major depression and anxiety disorders. Expert Rev Neurother. 2008;8:537–552. doi: 10.1586/14737175.8.4.537. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES