Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2009 Jan;6(1):86–93. doi: 10.1016/j.nurt.2008.10.034

Multifunctional pharmacotherapy: What can we learn from study of selective serotonin reuptake inhibitor augmentation of antipsychotics in negative-symptom schizophrenia?

Henry Silver 1,, Yael Chertkow 1, Orly Weinreb 2, Lena Danovich 1, Moussa Youdim 2
PMCID: PMC5084258  PMID: 19110201

Summary

Many patients suffering from major psychiatric disorders do not respond adequately to monotherapy and require additional drugs. To date, there are no objective guidelines for deciding which combination may be effective, and the choice is based on previous clinical experience and on trial and error. Even when combination drugs are effective, the biochemical mechanisms responsible for the value-added effect are unknown. Understanding the mechanism of such synergism may provide a rational basis for choosing drug combinations and for developing more effective drugs. In schizophrenia, negative symptoms respond poorly to antipsychotics, but may improve when these are augmented with selective serotonin reuptake inhibitors (SSRI). This augmenting effect cannot be explained by summating the pharmacological effects of the individual drugs. We proposed that the study of SSRI augmentation can serve as a window to understanding the biochemical mechanisms of clinically effective drug synergism. In a series of studies we identified unique biochemical effects of the combination, different from each individual drug, and proposed that some of these are involved in mediating the clinical effect. Here we review some of the findings and propose that the mechanism of action involves regionally selective modulation of the GABA system. The evidence indicates that the SSRI antidepressant-antipsychotic combination may be a useful paradigm for studying therapeutically effective synergistic drug interactions in schizophrenia. Although as yet limited in scope, the findings of definable molecular targets for synergistic SSRI-antipsychotic interaction provide new directions to inform future research and provide novel bio-molecular targets for drug development.

Key Words: Schizophrenia, negative symptoms, selective serotonin reuptake inhibitors, antipsychotic drugs, GABA

References

  • 1.Andreasen NC, Nopoulos P, Schultz S, et al. Positive and negative symptoms of schizophrenia: past, present, and future. Acta Psychiatr Scand Suppl. 1994;384:51–59. doi: 10.1111/j.1600-0447.1994.tb05891.x. [DOI] [PubMed] [Google Scholar]
  • 2.Berman RM, Narasimhan M, Chamey DS. Treatment-refractory depression: definitions and characteristics. Depress Anxiety. 1997;5:154–164. doi: 10.1002/(SICI)1520-6394(1997)5:4<154::AID-DA2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  • 3.Dell’Osso B, Altamura AC, Mundo E, Marazziti D, Hollander E. Diagnosis and treatment of obsessive-compulsive disorder and related disorders. Int J Clin Pract. 2007;61:98–104. doi: 10.1111/j.1742-1241.2006.01167.x. [DOI] [PubMed] [Google Scholar]
  • 4.Lieberman JA, Stroup TS, McEvoy JP, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353(12):1209–1223. doi: 10.1056/NEJMoa051688. [DOI] [PubMed] [Google Scholar]
  • 5.Lewis SW, Barnes TRE, Davies L, et al. Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophr Bull. 2006;32(4):715–723. doi: 10.1093/schbul/sbj067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fava M. Augmentation and combination strategies in treatment-resistant depression. J Clin Psychiatry. 2001;62(Suppl 18):4–11. [PubMed] [Google Scholar]
  • 7.Silver H. Fluvoxamine as an adjunctive agent in schizophrenia. CNS Drug Rev. 2001;7:283–304. doi: 10.1111/j.1527-3458.2001.tb00200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Burton S. Symptom domains of schizophrenia: the role of atypical antipsychotic agents. J Psychopharmacol. 2006;20:6–19. doi: 10.1177/1359786806071237. [DOI] [PubMed] [Google Scholar]
  • 9.Rummel C, Kissling W, Leucht S. Antidepressants for the negative symptoms of schizophrenia. Cochrane Database Syst Rev. 2006;3:CD005581–CD005581. doi: 10.1002/14651858.CD005581.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Silver H, Barash I, Aharon N, Kaplan A, Poyurovsky M. Fluvoxamine augmentation of antipsychotics improves negative symptoms in psychotic chronic schizophrenic patients: a placebo-controlled study. Int Clin Psychopharmacol. 2000;15:257–261. doi: 10.1097/00004850-200015050-00002. [DOI] [PubMed] [Google Scholar]
  • 11.Silver H, Nassar A. Fluvoxamine improves negative symptoms in treated chronic schizophrenia: an add-on double-blind, placebo-controlled study. Biol Psychiatry. 1992;31:698–704. doi: 10.1016/0006-3223(92)90279-9. [DOI] [PubMed] [Google Scholar]
  • 12.Silver H, Shmugliakov N. Augmentation with fluvoxamine but not maprotiline improves negative symptoms in treated schizophrenia: evidence for a specific serotonergic effect from a double-blind study. J Clin Psychopharmacol. 1998;8:208–211. doi: 10.1097/00004714-199806000-00005. [DOI] [PubMed] [Google Scholar]
  • 13.Chaichan W. Olanzapine plus fluvoxamine and olanzapine alone for the treatment of an acute exacerbation of schizophrenia. Psychiatry Clin Neurosci. 2004;58:364–368. doi: 10.1111/j.1440-1819.2004.01269.x. [DOI] [PubMed] [Google Scholar]
  • 14.Hiemke C, Peled A, Jabarin M, et al. Fluvoxamine augmentation of olanzapine in chronic schizophrenia: pharmacokinetic interactions and clinical effects. J Clin Psychopharmacol. 2002;22:502–506. doi: 10.1097/00004714-200210000-00010. [DOI] [PubMed] [Google Scholar]
  • 15.Lammers CH, Deuschle M, et al. Coadministration of clozapine and fluvoxamine in psychotic patients: clinical experience. Pharmacopsychiatry. 1999;32:76–77. doi: 10.1055/s-2007-979196. [DOI] [PubMed] [Google Scholar]
  • 16.Silver H, Kaplan A, Jahjah N. Fluvoxamine augmentation for clozapine-resistant schizophrenia. Am J Psychiatry. 1995;152:1098–1098. doi: 10.1176/ajp.152.7.1098. [DOI] [PubMed] [Google Scholar]
  • 17.Silver H, Kushnir M, Kaplan A. Fluvoxamine augmentation in clozapine-resistant schizophrenia: an open pilot study. Biol Psychiatry. 1996;40:671–674. doi: 10.1016/0006-3223(96)00170-9. [DOI] [PubMed] [Google Scholar]
  • 18.Szegedi A, Anghelescu I, Wiesner J, et al. Addition of low-dose fluvoxamine to low-dose clozapine monotherapy in schizophrenia: drug monitoring and tolerability data from a prospective clinical trial. Pharmacopsychiatry. 1999;32:148–153. doi: 10.1055/s-2007-979221. [DOI] [PubMed] [Google Scholar]
  • 19.Silver H, Aharon N, Kaplan A. Add-on fluvoxamine improves primary negative symptoms: evidence for specificity from response analysis of individual symptoms. Schizophr Bull. 2003;29:541–546. doi: 10.1093/oxfordjournals.schbul.a007026. [DOI] [PubMed] [Google Scholar]
  • 20.Silver H, Nassar A, Aharon N, Kaplan A. The onset and time course of response of negative symptoms to add-on fluvoxamine treatment. Int Clin Psychopharmacol. 2003;18:87–92. doi: 10.1097/00004850-200303000-00004. [DOI] [PubMed] [Google Scholar]
  • 21.Brøsen K. Differences in interactions of SSRIs. Int Clin Psychopharmacol. 1998;13(Suppl 5):S45–S47. doi: 10.1097/00004850-199809005-00009. [DOI] [PubMed] [Google Scholar]
  • 22.Spina E, de Leon J. Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007;100:4–22. doi: 10.1111/j.1742-7843.2007.00017.x. [DOI] [PubMed] [Google Scholar]
  • 23.Sproule BA, Otton SV, Cheung SW, Zhong XH, Romach MK, Sellers EM. CYP2D6 inhibition in patients treated with sertraline. J Clin Psychopharmacol. 1997;17:102–106. doi: 10.1097/00004714-199704000-00007. [DOI] [PubMed] [Google Scholar]
  • 24.Weigmann H, Gerek S, Zeisig A, Müller M, Härtter S, Hiemke C. Fluvoxamine but not sertraline inhibits the metabolism of olanzapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit. 2001;23:410–413. doi: 10.1097/00007691-200108000-00015. [DOI] [PubMed] [Google Scholar]
  • 25.Wetzel H, Anghelescu I, Szegedi A, et al. Pharmacokinetic interactions of clozapine with selective serotonin reuptake inhibitors: differential effects of fluvoxamine and paroxetine in a prospective study. J Clin Psychopharmacol. 1998;18:2–9. doi: 10.1097/00004714-199802000-00002. [DOI] [PubMed] [Google Scholar]
  • 26.Avenoso A, Spina E, Campo G, et al. Interaction between fluoxetine and haloperidol: pharmacokinetic and clinical implications. Pharmacol Res. 1997;35:335–339. [PubMed] [Google Scholar]
  • 27.Yasui-Furukori N, Kondo T, Mihara K, Inoue Y, Kaneko S. Fluvoxamine dose-dependent interaction with haloperidol and the effects on negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004;171:223–227. doi: 10.1007/s00213-003-1567-y. [DOI] [PubMed] [Google Scholar]
  • 28.Baldessarini RJ, Cohen BM, Teicher MH. Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry. 1988;45:79–91. doi: 10.1001/archpsyc.1988.01800250095013. [DOI] [PubMed] [Google Scholar]
  • 29.de Oliveira IR, Dardennes RM, Amorim ES, et al. Is there a relationship between antipsychotic blood levels and their clinical efficacy? An analysis of studies design and methodology. Fundam Clin Pharmacol. 1995;9:488–502. doi: 10.1111/j.1472-8206.1995.tb00524.x. [DOI] [PubMed] [Google Scholar]
  • 30.Volavka J, Cooper TB, Czobor P, et al. High-dose treatment with haloperidol: the effect of dose reduction. J Clin Psychopharmacol. 2000;20:252–256. doi: 10.1097/00004714-200004000-00020. [DOI] [PubMed] [Google Scholar]
  • 31.Poyurovsky M, Kurs R, Weizman A. Olanzapine-sertraline combination in schizophrenia with obsessive-compulsive disorder. J Clin Psychiatry. 2003;64:611–611. doi: 10.4088/JCP.v64n0518c. [DOI] [PubMed] [Google Scholar]
  • 32.Goff DC, Freudenreich O, Evins AE. Augmentation strategies in the treatment of schizophrenia. CNS Spectr. 2001;6:904–904. doi: 10.1017/s1092852900000961. [DOI] [PubMed] [Google Scholar]
  • 33.Stoll AL, Haura G. Tranylcypromine plus risperidone for treatment-refractory major depression. J Clin Psychopharmacol. 2000;20:495–496. doi: 10.1097/00004714-200008000-00020. [DOI] [PubMed] [Google Scholar]
  • 34.Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol. 2002;42:165–179. doi: 10.1146/annurev.pharmtox.42.082701.160735. [DOI] [PubMed] [Google Scholar]
  • 35.Siris SG. Adjunctive medication in the maintenance treatment of schizophrenia and its conceptual implications. Br J Psychiatry Suppl 1993;(22):66–78. [PubMed]
  • 36.Silver H, David D, Kaplan M, et al. An examination of the factor structure of schizophrenic symptoms and comparison of different rating scales. Schizophr Res. 1993;10:67–75. doi: 10.1016/0920-9964(93)90078-W. [DOI] [PubMed] [Google Scholar]
  • 37.Silver H. Selective serotonin reuptake inhibitor augmentation in the treatment of negative symptoms of schizophrenia. Int Clin Psychopharmacol. 2003;18:305–313. doi: 10.1097/00004850-200311000-00001. [DOI] [PubMed] [Google Scholar]
  • 38.Chertkow Y, Weinreb O, Youdim MB, Silver H. Dopamine and serotonin metabolism in response to chronic administration of fluvoxamine and haloperidol combined [Erratum in: J Neural Trans 2007;114:1455] J Neural Transm. 2007;114:1443–1454. doi: 10.1007/s00702-007-0753-1. [DOI] [PubMed] [Google Scholar]
  • 39.Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12:193–198. doi: 10.1176/jnp.12.2.193. [DOI] [PubMed] [Google Scholar]
  • 40.Wong DT, Bymaster FP, Reid LR, Threlkeld PG. Fluoxetine and two other serotonin uptake inhibitors without affinity for neuronal receptors. Biochem Pharmacol. 1983;32:1287–1293. doi: 10.1016/0006-2952(83)90284-8. [DOI] [PubMed] [Google Scholar]
  • 41.Silver H, Youdim MB. MAO-A and MAO-B activities in rat striatum, frontal cortex and liver are unaltered after long-term treatment with fluvoxamine and desipramine. Eur Neuropsychopharmacol. 2000;10:125–128. doi: 10.1016/S0924-977X(99)00066-8. [DOI] [PubMed] [Google Scholar]
  • 42.Baldessarini RJ, Marsh ER, Kula NS. Interactions of fluoxetine with metabolism of dopamine and serotonin in rat brain regions. Brain Res. 1992;579:152–156. doi: 10.1016/0006-8993(92)90754-W. [DOI] [PubMed] [Google Scholar]
  • 43.Moret C, Briley M. Effect of antidepressant drugs on monoamine synthesis in brain in vivo. Neuropharmacology. 1992;31:679–684. doi: 10.1016/0028-3908(92)90146-G. [DOI] [PubMed] [Google Scholar]
  • 44.Penttilä J, Kajander J, Aalto S, et al. Effects of fluoxetine on dopamine D2 receptors in the human brain: a positron emission tomography study with [11C]raclopride. Int J Neuropsychopharmacol. 2004;7:431–439. doi: 10.1017/S146114570400450X. [DOI] [PubMed] [Google Scholar]
  • 45.Zhang W, Perry KW, Wong DT, et al. Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology. 2000;23:250–262. doi: 10.1016/S0893-133X(00)00119-6. [DOI] [PubMed] [Google Scholar]
  • 46.Denys D, Klompmakers AA, Westenberg HG. Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine. Psychopharmacology (Berl) 2004;176:195–203. doi: 10.1007/s00213-004-1880-0. [DOI] [PubMed] [Google Scholar]
  • 47.Koch S, Perry KW, Bymaster FP. Brain region and dose effects of an olanzapine-fluoxetine combination on extracellular monoamine concentrations in the rat. Neuropharmacology. 2004;46:232–242. doi: 10.1016/j.neuropharm.2003.09.001. [DOI] [PubMed] [Google Scholar]
  • 48.Ago Y, Nakamura S, Baba A, Matsuda T. Sulphide in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex. Neuropsychopharmacology. 2005;30:43–51. doi: 10.1038/sj.npp.1300567. [DOI] [PubMed] [Google Scholar]
  • 49.Waldmeier PC. Analysis of the activation of dopamine metabolism by a serotonin uptake inhibitor. Eur J Pharmacol. 1979;60:315–322. doi: 10.1016/0014-2999(79)90235-8. [DOI] [PubMed] [Google Scholar]
  • 50.Waldmeier PC, Delini-Stula AA. Serotonin-dopamine interactions in the nigrostriatal system. Eur J Pharmacol. 1979;55:363–373. doi: 10.1016/0014-2999(79)90110-9. [DOI] [PubMed] [Google Scholar]
  • 51.Chertkow Y, Weinreb O, Youdim MB, Silver H. The effect of chronic co-administration of fluvoxamine and haloperidol compared to clozapine on the GABA system in the rat frontal cortex. Int J Neuropsychopharmacol. 2006;9:287–296. doi: 10.1017/S1461145705005626. [DOI] [PubMed] [Google Scholar]
  • 52.Danovich L, Weinreb O, Youdim MB, Silver H. The molecular mechanism of pharmacodynamic interactions between psychoactive drugs: interactions between antidepressants and antipsychotic drugs. Presented at: Israel Society for Neuroscience Conference Eilat 2007; November 25–27, 2007; Eilat, Israel.
  • 53.Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–94. doi: 10.1176/appi.ajp.157.5.683. [DOI] [PubMed] [Google Scholar]
  • 54.Tian J, Chau C, Hales TG, Kaufman DL. GABAA receptors mediate inhibition of T cell responses. J Neuroimmunol. 1999;96:21–28. doi: 10.1016/S0165-5728(98)00264-1. [DOI] [PubMed] [Google Scholar]
  • 55.Avissar S, Roitman G, Schreiber G. Differential effects of the antipsychotics haloperidol and clozapine on G protein measures in mononuclear leukocytes of patients with schizophrenia. Cell Mol Neurobiol. 2001;21:799–811. doi: 10.1023/A:1015164423918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Ilani T, Ben-Shachar D, Strous RD, et al. A peripheral marker for schizophrenia: increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci U S A. 2001;98:625–628. doi: 10.1073/pnas.021535398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:559–576. doi: 10.1016/j.pnpbp.2004.01.009. [DOI] [PubMed] [Google Scholar]
  • 58.Tang Y, Gilbert DL, Glauser TA, Hershey AD, Sharp FR. Blood gene expression profiling of neurologic diseases: a pilot microarray study. Arch Neurol. 2005;62:210–215. doi: 10.1001/archneur.62.2.210. [DOI] [PubMed] [Google Scholar]
  • 59.Bowden NA, Weidenhofer J, Scott RJ, et al. Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res. 2006;82:175–183. doi: 10.1016/j.schres.2005.11.012. [DOI] [PubMed] [Google Scholar]
  • 60.Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med. 2006;147:126–132. doi: 10.1016/j.lab.2005.10.005. [DOI] [PubMed] [Google Scholar]
  • 61.Rothermundt M, Arolt V, Bayer TA. Review of immunological and immunopathological findings in schizophrenia. Brain Behav Immun. 2001;15:319–339. doi: 10.1006/brbi.2001.0648. [DOI] [PubMed] [Google Scholar]
  • 62.Chertkow Y, Weinreb O, Youdim MB, Silver H. Gene expression changes in peripheral mononuclear cells from schizophrenic patients treated with a combination of antipsychotic with fluvoxamine. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1356–1362. doi: 10.1016/j.pnpbp.2007.04.016. [DOI] [PubMed] [Google Scholar]
  • 63.Dean B, Hussain T, Hayes W, et al. Changes in serotonin2A and GABAA receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem. 1999;72:1593–1599. doi: 10.1046/j.1471-4159.1999.721593.x. [DOI] [PubMed] [Google Scholar]
  • 64.Toyooka K, Watanabe Y, Iritani S, et al. A decrease in interleukin-1 receptor antagonist expression in the prefrontal cortex of schizophrenic patients. Neurosci Res. 2003;46:299–307. doi: 10.1016/S0168-0102(03)00093-2. [DOI] [PubMed] [Google Scholar]
  • 65.Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6:293–301. doi: 10.1038/sj.mp.4000866. [DOI] [PubMed] [Google Scholar]
  • 66.Bowden NA, Scott RJ, Tooney PA. Altered expression of regulator of G-protein signalling 4 (RGS4) mRNA in the superior temporal gyrus in schizophrenia. Schizophr Res. 2007;89:165–168. doi: 10.1016/j.schres.2006.09.003. [DOI] [PubMed] [Google Scholar]
  • 67.Broadbelt K, Ramprasaud A, Jones LB. Evidence of altered neurogranin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. Schizophr Res. 2006;87:6–14. doi: 10.1016/j.schres.2006.04.028. [DOI] [PubMed] [Google Scholar]
  • 68.Reynolds GP, Zhang ZJ, Beasley CL. Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res Bull. 2001;55:579–584. doi: 10.1016/S0361-9230(01)00526-3. [DOI] [PubMed] [Google Scholar]
  • 69.Blum BP, Mann JJ. The GABAergic system in schizophrenia. Int J Neuropsychopharmacol. 2002;5:159–179. doi: 10.1017/S1461145702002894. [DOI] [PubMed] [Google Scholar]
  • 70.Hashimoto T, Bazmi HH, Mimics K, Wu Q, Sampson AR, Lewis DA. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry. 2008;165:479–489. doi: 10.1176/appi.ajp.2007.07081223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kalkman HO, Loetscher E. GAD67:the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. J Neural Transm. 2003;110:803–812. doi: 10.1007/s00702-003-0826-8. [DOI] [PubMed] [Google Scholar]
  • 72.Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57:237–245. doi: 10.1001/archpsyc.57.3.237. [DOI] [PubMed] [Google Scholar]
  • 73.Benes FM, Vincent SL, Maric A, Khan Y. Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience. 1996;75:1021–1031. doi: 10.1016/0306-4522(96)00328-4. [DOI] [PubMed] [Google Scholar]
  • 74.Deng C, Huang XF. Increased density of GABAA receptors in the superior temporal gyrus in schizophrenia. Exp Brain Res. 2006;168:587–590. doi: 10.1007/s00221-005-0290-9. [DOI] [PubMed] [Google Scholar]
  • 75.Javitt DC. Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry. 2006;19:151–157. doi: 10.1097/01.yco.0000214340.14131.bd. [DOI] [PubMed] [Google Scholar]
  • 76.Shim SS, Hammonds MD, Kee BS. Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site. Eur Arch Psychiatry Clin Neurosci. 2008;258:16–27. doi: 10.1007/s00406-007-0757-8. [DOI] [PubMed] [Google Scholar]
  • 77.Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther. 2003;97:153–79. doi: 10.1016/S0163-7258(02)00328-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Weinberger DR, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci. 1996;351:1495–503. doi: 10.1098/rstb.1996.0135. [DOI] [PubMed] [Google Scholar]
  • 79.Daskalakis ZJ, Fitzgerald PB, Christensen BK. The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. Brain Res Rev. 2007;56:427–42. doi: 10.1016/j.brainresrev.2007.09.006. [DOI] [PubMed] [Google Scholar]
  • 80.Eggan SM, Hashimoto T, Lewis DA. Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Arch Gen Psychiatry. 2008;65:772–784. doi: 10.1001/archpsyc.65.7.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Silver H, Feldman P, Bilker W, Gur RC. Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry. 2003;160:1809–1816. doi: 10.1176/appi.ajp.160.10.1809. [DOI] [PubMed] [Google Scholar]
  • 82.Schmitt A, May B, Müller B, et al. Effects of chronic haloperidol and clozapine treatment on AMPA and kainate receptor binding in rat brain. Pharmacopsychiatry. 2003;36:292–296. doi: 10.1055/s-2003-45116. [DOI] [PubMed] [Google Scholar]
  • 83.Zhang HX, Zhao JP, Lv LX, et al. Explorative study on the expression of neuregulin-1 gene in peripheral blood of schizophrenia. Neurosci Lett. 2008;438:1–5. doi: 10.1016/j.neulet.2007.09.051. [DOI] [PubMed] [Google Scholar]
  • 84.Fumagalli F, Frasca A, Racagni G, Riva MA. Dynamic regulation of glutamatergic postsynaptic activity in rat prefrontal cortex by repeated administration of antipsychotic drugs. Mol Pharmacol. 2008;73:1484–1490. doi: 10.1124/mol.107.043786. [DOI] [PubMed] [Google Scholar]
  • 85.Tarazi FI, Baldessarini RJ, Kula NS, Zhang K. Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: implications for antipsychotic drug treatment. J Pharmacol Exp Ther. 2003;306:1145–1151. doi: 10.1124/jpet.103.052597. [DOI] [PubMed] [Google Scholar]
  • 86.Zink M, Schmitt A, May B, et al. Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res. 2004;66:151–157. doi: 10.1016/S0920-9964(03)00088-4. [DOI] [PubMed] [Google Scholar]
  • 87.Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA. Differential effects of long-term treatment with clozapine or haloperidol on GABA transporter expression. Pharmacopsychiatry. 2004;37:171–174. doi: 10.1055/s-2004-827173. [DOI] [PubMed] [Google Scholar]
  • 88.Zink M, Schmitt A, May B, et al. Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res. 2004;66:151–157. doi: 10.1016/S0920-9964(03)00088-4. [DOI] [PubMed] [Google Scholar]
  • 89.Feng J, Cai X, Zhao J, Yan Z. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neurosci. 2001;21:6502–6511. doi: 10.1523/JNEUROSCI.21-17-06502.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Pinna G, Costa E, Guidotti A. Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 2006;186:362–372. doi: 10.1007/s00213-005-0213-2. [DOI] [PubMed] [Google Scholar]
  • 91.Silver H, Knoll G, Isakov V, Goodman C, Finkelstein Y. Blood DHEAS concentrations correlate with cognitive function in chronic schizophrenia patients: a pilot study. J Psychiatr Res. 2005;39:569–575. doi: 10.1016/j.jpsychires.2005.01.008. [DOI] [PubMed] [Google Scholar]
  • 92.Strous RD. Dehydroepiandrosterone (DHEA) augmentation in the management of schizophrenia symptomatology. Essent Psychopharmacol. 2005;6:141–147. [PubMed] [Google Scholar]
  • 93.Tsai GE, Yang P, Chang YC, Chong MY. d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2006;59:230–234. doi: 10.1016/j.biopsych.2005.06.032. [DOI] [PubMed] [Google Scholar]
  • 94.Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999;56:29–36. doi: 10.1001/archpsyc.56.1.29. [DOI] [PubMed] [Google Scholar]
  • 95.Lane HY, Huang CL, Wu PL, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry. 2006;60:645–9. doi: 10.1016/j.biopsych.2006.04.005. [DOI] [PubMed] [Google Scholar]
  • 96.Menzies L, Ooi C, Kamath S, et al. Effects of aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Arch Gen Psychiatry. 2007;64:156–167. doi: 10.1001/archpsyc.64.2.156. [DOI] [PubMed] [Google Scholar]
  • 97.Sawaguchi T, Matsumura M, Kubota K. Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicuculline. Behav Brain Res. 1988;31:193–198. doi: 10.1016/0166-4328(88)90023-X. [DOI] [PubMed] [Google Scholar]
  • 98.Rao SG, Williams GV, Goldman-Rakic PS. Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory. J Neurosci. 2000;20:485–494. doi: 10.1523/JNEUROSCI.20-01-00485.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Lewis DA, Volk DW, Hashimoto T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology. 2004;174(1):143–150. doi: 10.1007/s00213-003-1673-x. [DOI] [PubMed] [Google Scholar]
  • 100.Silver H, Shlomo N, Schwartz M, Hocherman S. Impaired visuomotor function in schizophrenic patients compared with control subjects. J Neuropsychiatry Clin Neurosci. 2002;14:72–76. doi: 10.1176/jnp.14.1.72. [DOI] [PubMed] [Google Scholar]
  • 101.Silver H, Feldman P. Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism. J Neuropsychiatry Clin Neurosci. 2005;17:391–398. doi: 10.1176/jnp.17.3.391. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES