Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2009 Jan;6(1):163–174. doi: 10.1016/j.nurt.2008.10.030

Multifunctional neuroprotective derivatives of rasagiline as anti-alzheimer’s disease drugs

Orly Weinreb 1,2, Silvia Mandel 1,2, Orit Bar-Am 1,2, Merav Yogev-Falach 1,2, Yael Avramovich-Tirosh 1,2, Tamar Amit 1,2, Moussa B H Youdim 1,2,
PMCID: PMC5084264  PMID: 19110207

Summary

The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the multimodal drugs, ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] and the newly designed multifunctional antioxidant iron chelator, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline). Ladostigil combines, in a single molecule, the neuro-protective/neurorestorative effects of the novel anti-Parkinsonian drug and selective monoamine oxidase (MAO)-B inhibitor, rasagiline (Azilect, Teva Pharmaceutical Co.) with the cholinesterase (ChE) inhibitory activity of rivastigmine. A second derivative of rasagiline, M-30 was developed by amalgamating the propargyl moiety of rasagiline into the skeleton of our novel brain permeable neuroprotective iron chelator, VK-28. Preclinical experiments showed that both compounds have anti-Alzheimer’s disease activities and thus, the clinical development is oriented toward treatment of this type of dementia. This review discusses the multimodal effects of two rasagiline-containing hybrid molecules, namely ladostigil and M-30, concerning their neuroprotective molecular mechanisms in vivo and in vitro, including regulation of amyloid precursor protein processing, activation of protein kinase C, and mitogen-activated protein kinase signaling pathways, inhibition of cell death markers and upregulation of neurotrophic factors. Altogether, these scientific findings make these multifunctional compounds potentially valuable drugs for the treatment of Alzheimer’s disease.

Key Words: Alzheimer’s disease, amyloid precursor protein, multifunctional drugs, propargyl moiety, cholinesterase inhibitor, iron chelator

References

  • 1.Youdim MB, Maruyama W, Naoi M. Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor anti-Parkinsonian drug, rasagiline. Drugs Today. 2005;41:369–391. doi: 10.1358/dot.2005.41.6.893613. [DOI] [PubMed] [Google Scholar]
  • 2.Rabey JM, Sagi I, Huberman M, et al. Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol. 2000;23:324–330. doi: 10.1097/00002826-200011000-00005. [DOI] [PubMed] [Google Scholar]
  • 3.Parkinson Study Group A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59:1937–1943. doi: 10.1001/archneur.59.12.1937. [DOI] [PubMed] [Google Scholar]
  • 4.Parkinson Study Group A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59:1937–1943. doi: 10.1001/archneur.59.12.1937. [DOI] [PubMed] [Google Scholar]
  • 5.Parkinson Study Group A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005;62:241–248. doi: 10.1001/archneur.62.2.241. [DOI] [PubMed] [Google Scholar]
  • 6.Maruyama W, Nitta A, Shamoto-Nagai M, et al. N-Propargyl-1 (R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kappaB transcription factor. Neurochem Int. 2004;44:393–400. doi: 10.1016/j.neuint.2003.08.005. [DOI] [PubMed] [Google Scholar]
  • 7.Maruyama W, Youdim MBH, Naoi M. Antiapoptotic properties of rasagiline, N-propargylamine-l(R)-aminoindan, and its optical (S)-isomer, TV1022. Ann N Y Acad Sci. 2001;939:320–329. doi: 10.1111/j.1749-6632.2001.tb03641.x. [DOI] [PubMed] [Google Scholar]
  • 8.Maruyama W, Akao Y, Youdim MBH, Boulton AA, Davis BA, Naoi M. Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem. 2001;78:727–735. doi: 10.1046/j.1471-4159.2001.00448.x. [DOI] [PubMed] [Google Scholar]
  • 9.Akao Y, Maruyama W, Shimizu S, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem. 2002;82:913–923. doi: 10.1046/j.1471-4159.2002.01047.x. [DOI] [PubMed] [Google Scholar]
  • 10.Maruyama W, Akao Y, Youdim MBH, Naoi M. Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1(R)-and (S)-aminoindan, rasagiline and TV1022. J Neural Transm. 2000;60:171–186. doi: 10.1007/978-3-7091-6301-6_11. [DOI] [PubMed] [Google Scholar]
  • 11.Maruyama W, Akao Y, Carrillo M, Kitani K, Youdium M, Naoi M. Neuroprotection by propargylamines in Parkinson’s disease. Suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol. 2002;24:675–682. doi: 10.1016/s0892-0362(02)00221-0. [DOI] [PubMed] [Google Scholar]
  • 12.Maruyama W, Takahashi T, Youdim MBH, Naoi M. The anti-parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm. 2002;109:467–481. doi: 10.1007/s007020200038. [DOI] [PubMed] [Google Scholar]
  • 13.Finberg JP, Lamensdorf I, Weinstock M, Schwartz M, Youdim MBH. Pharmacology of rasagiline (N-propargyl-1R-aminoindan) Adv Neurol. 1999;80:495–499. [PubMed] [Google Scholar]
  • 14.Heikkila RE, Duvoisin RC, Finberg JP, Youdim MBH. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur J Pharmacol. 1985;116:313–317. doi: 10.1016/0014-2999(85)90168-2. [DOI] [PubMed] [Google Scholar]
  • 15.Speiser Z, Mayk A, Eliash S, Cohen S. Studies with rasagiline, a MAO-B inhibitor, in experimental focal ischemia in the rat. J Neural Transm. 1999;106:593–606. doi: 10.1007/s007020050182. [DOI] [PubMed] [Google Scholar]
  • 16.Huang W, Chen Y, Shohami E, Weinstock M. Neuroprotective effect of rasagiline, a selective monoamine oxidase-B inhibitor, against closed head injury in the mouse. Eur J Pharmacol. 1999;366:127–135. doi: 10.1016/s0014-2999(98)00929-7. [DOI] [PubMed] [Google Scholar]
  • 17.Youdim MBH, Amit T, Yogev-Falach M, Bar-Am O, Maruyama W, Naoi M. The essentiality of Bcl-2, PKC and proteasome-ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-parkinson drug, rasagiline. Biochem Pharmacol. 2003;66:1635–1641. doi: 10.1016/s0006-2952(03)00535-5. [DOI] [PubMed] [Google Scholar]
  • 18.Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH. Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. Faseb J. 2004;18:1471–1473. doi: 10.1096/fj.04-1916fje. [DOI] [PubMed] [Google Scholar]
  • 19.Bar-Am O, Yogev-Falach M, Amit T, Sagi Y, Y M.B.H. Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem. 2004;89:1119–1125. doi: 10.1111/j.1471-4159.2004.02425.x. [DOI] [PubMed] [Google Scholar]
  • 20.Bar-Am O, Weinreb O, Amit T, Youdim MB. Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. Faseb J. 2005;19:1899–1901. doi: 10.1096/fj.05-3794fje. [DOI] [PubMed] [Google Scholar]
  • 21.Yogev-Falach M, Amit T, Bar-Am O, Sagi Y, Weinstock M, Youdim MBH. The involvement of mitogen-activated protein (MAP) kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. Faseb J. 2002;16:1674–1676. doi: 10.1096/fj.02-0198fje. [DOI] [PubMed] [Google Scholar]
  • 22.Yogev-Falach M, Amit T, Bar-AM O, Youdim MBH. The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives for MAPK-dependent amyloid precursor protein processing. Faseb J. 2003;17:2325–2327. doi: 10.1096/fj.03-0078fje. [DOI] [PubMed] [Google Scholar]
  • 23.Akao Y, Maruyama W, Yi H, et al. An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic Bcl-2 in human dopaminergic SHSY5Y cells. Neurosci Lett. 2002;326:105–108. doi: 10.1016/s0304-3940(02)00332-4. [DOI] [PubMed] [Google Scholar]
  • 24.Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MBH. Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann N Y Acad Sci. 2005;1053:348–355. doi: 10.1196/annals.1344.030. [DOI] [PubMed] [Google Scholar]
  • 25.Ku WC, Cheng AJ, Wang TC. Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. Biochem Biophys Res Commun. 1997;241:730–736. doi: 10.1006/bbrc.1997.7874. [DOI] [PubMed] [Google Scholar]
  • 26.Gekeler V, Boer R, Uberall F, et al. Effects of the selective bisindolylmaleimide protein kinase C inhibitor GF 109203X on P-glycoprotein-mediated multidrug resistance. Br J Cancer. 1996;74:897–905. doi: 10.1038/bjc.1996.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rogers JT, Lahiri DK. Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets. 2004;5:535–551. doi: 10.2174/1389450043345272. [DOI] [PubMed] [Google Scholar]
  • 28.Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D. Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res. 2005;30:927–935. doi: 10.1007/s11064-005-6967-4. [DOI] [PubMed] [Google Scholar]
  • 29.Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502:139–144. doi: 10.1016/s0925-4439(00)00040-5. [DOI] [PubMed] [Google Scholar]
  • 30.Youdim MB. The path from anti Parkinson drug selegiline and rasagiline to multifunctional neuroprotective anti Alzheimer drugs ladostigil and M30. Curr Alzheimer Res. 2006;3:541–550. doi: 10.2174/156720506779025288. [DOI] [PubMed] [Google Scholar]
  • 31.Youdim MB, Buccafusco JJ. CNS Targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm 2005. [DOI] [PubMed]
  • 32.Youdim MB, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci. 2005;26:27–35. doi: 10.1016/j.tips.2004.11.007. [DOI] [PubMed] [Google Scholar]
  • 33.Bullock R. Future directions in the treatment of Alzheimer’s disease. Expert Opin Investig Drugs. 2004;13:303–314. doi: 10.1517/13543784.13.4.303. [DOI] [PubMed] [Google Scholar]
  • 34.Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A. Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen. 2001;16:268–278. doi: 10.1177/153331750101600512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol. 2003;43:545–584. doi: 10.1146/annurev.pharmtox.43.100901.140248. [DOI] [PubMed] [Google Scholar]
  • 36.Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer’s disease-interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res. 2005;30:895–908. doi: 10.1007/s11064-005-6962-9. [DOI] [PubMed] [Google Scholar]
  • 37.Palmer AM, Stratmann GC, Procter AW, Bowen DM. Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Ann Neurol. 1988;23:616–620. doi: 10.1002/ana.410230616. [DOI] [PubMed] [Google Scholar]
  • 38.Newman SC. The prevalence of depression in Alzheimer’s disease and vascular dementia in a population sample. J Affect Disord. 1999;52:169–176. doi: 10.1016/s0165-0327(98)00070-6. [DOI] [PubMed] [Google Scholar]
  • 39.Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Lopez OL, Becker JT, Wisniewski S, Saxton J, Kaufer DI, De-Kosky ST. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;72:310–314. doi: 10.1136/jnnp.72.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J Neural Transm 2002:181–187. [DOI] [PubMed]
  • 42.Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S. Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol Res. 2004;50:441–451. doi: 10.1016/j.phrs.2003.12.027. [DOI] [PubMed] [Google Scholar]
  • 43.Francis PT, Nordberg A, Arnold SE. A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci. 2005;26:104–111. doi: 10.1016/j.tips.2004.12.010. [DOI] [PubMed] [Google Scholar]
  • 44.Bullock R. Cholinesterase inhibitors and vascular dementia: another suing to their bow? CNS Drugs. 2004;18:79–92. doi: 10.2165/00023210-200418020-00002. [DOI] [PubMed] [Google Scholar]
  • 45.Robert P. Understanding and managing behavioural symptoms in Alzheimer’s disease and related dementias: focus on rivastigmine. Curr Med Res Opin. 2002;18:156–171. doi: 10.1185/030079902125000561. [DOI] [PubMed] [Google Scholar]
  • 46.Clark CM, Karlawish JH. Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med. 2003;138:400–410. doi: 10.7326/0003-4819-138-5-200303040-00010. [DOI] [PubMed] [Google Scholar]
  • 47.Klafki HW, Staufenbiel M, Komhuber J, Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain. 2006;129:2840–2855. doi: 10.1093/brain/awl280. [DOI] [PubMed] [Google Scholar]
  • 48.Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim MBH. A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:555–561. doi: 10.1016/S0278-5846(03)00053-8. [DOI] [PubMed] [Google Scholar]
  • 49.Weinstock M, Bejar C, Wang RH, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. J Neural Transm. 2000;60:S157–S170. doi: 10.1007/978-3-7091-6301-6_10. [DOI] [PubMed] [Google Scholar]
  • 50.Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MBH, Shoham S. Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci. 2001;939:148–161. doi: 10.1111/j.1749-6632.2001.tb03622.x. [DOI] [PubMed] [Google Scholar]
  • 51.Sterling J, Herzig Y, Goren T, et al. Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J Med Chem. 2002;45:5260–5279. doi: 10.1021/jm020120c. [DOI] [PubMed] [Google Scholar]
  • 52.Maruyama W, Weinstock M, Youdim MB, Nagai M, Naoi M. Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett. 2003;341:233–236. doi: 10.1016/s0304-3940(03)00211-8. [DOI] [PubMed] [Google Scholar]
  • 53.Yogev-Falach M, Bar-Am O, Amit T, Weinreb O, Youdim MB. A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. Faseb J. 2006;20:2177–2179. doi: 10.1096/fj.05-4910fje. [DOI] [PubMed] [Google Scholar]
  • 54.Buccafusco JJ, Terry AV, Goren T, Blaugrun E. Potential cognitive actions of (n-propargly-(3r)-aminoindan-5-yl)-ethyl, methyl carbamate (tv3326), a novel neuroprotective agent, as assessed in old rhesus monkeys in their performance of versions of a delayed matching task. Neuroscience. 2003;119:669–678. doi: 10.1016/s0306-4522(02)00937-5. [DOI] [PubMed] [Google Scholar]
  • 55.Weinstock M, Poltyrev T, Bejar C, Youdim MB. Effect of TV3326, a novel monoamine-oxidase cholinesterase inhibitor, in rat models of anxiety and depression. Psychopharmacology. 2002;160:318–324. doi: 10.1007/s00213-001-0978-x. [DOI] [PubMed] [Google Scholar]
  • 56.Youdim MBH, Wadia A, Tatton W, Weinstock M. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci. 2001;939:450–458. doi: 10.1111/j.1749-6632.2001.tb03656.x. [DOI] [PubMed] [Google Scholar]
  • 57.Poltyrev T, Gorodetsky E, Bejar C, Schorer-Apelbaum D, Weinstock M. Effect of chronic treatment with ladostigil (TV-3326) on anxiogenic and depressive-like behaviour and on activity of the hypothalamic-pituitary-adrenal axis in male and female prenatally stressed rats. Psychopharmacology. 2005;181:118–125. doi: 10.1007/s00213-005-2229-z. [DOI] [PubMed] [Google Scholar]
  • 58.Sagi Y, Drigues N, Youdim MB. The neurochemical and behavioral effects of the novel cholinesterase-monoamine oxidase inhibitor, ladostigil, in response to L-dopa and L-tryptophan, in rats. Br J Pharmacol. 2005;146:553–560. doi: 10.1038/sj.bjp.0706355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M. Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology. 2007;52:836–843. doi: 10.1016/j.neuropharm.2006.10.005. [DOI] [PubMed] [Google Scholar]
  • 60.Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52. doi: 10.1016/s0022-510x(98)00092-6. [DOI] [PubMed] [Google Scholar]
  • 61.Pinero DJ, Hu J, Connor JR. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol Biol. 2000;46:761–776. [PubMed] [Google Scholar]
  • 62.Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem. 1998;70:2212–2215. doi: 10.1046/j.1471-4159.1998.70052212.x. [DOI] [PubMed] [Google Scholar]
  • 63.Moreira PI, Honda K, Liu Q, et al. Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr Alzheimer Res. 2005;2:403–408. doi: 10.2174/156720505774330537. [DOI] [PubMed] [Google Scholar]
  • 64.Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem. 2005;280:20978–20986. doi: 10.1074/jbc.M500526200. [DOI] [PubMed] [Google Scholar]
  • 65.Connor JR, Menzies SL, St Martin SM, Mufson EJ. A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res. 1992;31:75–83. doi: 10.1002/jnr.490310111. [DOI] [PubMed] [Google Scholar]
  • 66.Yamada T, Tsujioka Y, Taguchi J, et al. Melanotransferrin is produced by senile plaque-associated reactive microglia in Alzheimer’s disease. Brain Res. 1999;845:1–5. doi: 10.1016/s0006-8993(99)01767-9. [DOI] [PubMed] [Google Scholar]
  • 67.Bush AI. The metallobiology of Alzheimer’s disease. Trends Neurosci. 2003;26:207–214. doi: 10.1016/S0166-2236(03)00067-5. [DOI] [PubMed] [Google Scholar]
  • 68.House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis. 2004;6:291–301. doi: 10.3233/jad-2004-6310. [DOI] [PubMed] [Google Scholar]
  • 69.Yamamoto A, Shin RW, Hasegawa K, et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002;82:1137–1147. doi: 10.1046/j.1471-4159.2002.t01-1-01061.x. [DOI] [PubMed] [Google Scholar]
  • 70.Rogers JT, Randall JD, Cahill CM, et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. JBC. 2002;277:45518–45528. doi: 10.1074/jbc.M207435200. [DOI] [PubMed] [Google Scholar]
  • 71.Zheng H, Weiner LM, Bar-Am O, et al. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem. 2005;13:773–783. doi: 10.1016/j.bmc.2004.10.037. [DOI] [PubMed] [Google Scholar]
  • 72.Ben-Shachar D, Kahana N, Kampel V, Warshawsky A, Youdim MBH. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology. 2004;46:254–263. doi: 10.1016/j.neuropharm.2003.09.005. [DOI] [PubMed] [Google Scholar]
  • 73.Gal S, Zheng H, Fridkin M, Youdim MB. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain mono-amine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem. 2005;95:79–88. doi: 10.1111/j.1471-4159.2005.03341.x. [DOI] [PubMed] [Google Scholar]
  • 74.Zhu W, Xie W, Pan T, et al. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. Faseb J. 2007;21:3835–3844. doi: 10.1096/fj.07-8386com. [DOI] [PubMed] [Google Scholar]
  • 75.Zheng HGS, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MBH. Novel multifunctional neuroprotective iron chelator-monoamine oxidase drugs for neurodegenerative diseases: i. in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem. 2005;95:68–78. doi: 10.1111/j.1471-4159.2005.03340.x. [DOI] [PubMed] [Google Scholar]
  • 76.Pakaski M, Kasa P. Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein. Curr Drug Targets CNS Neurol Disord. 2003;2:163–171. doi: 10.2174/1568007033482869. [DOI] [PubMed] [Google Scholar]
  • 77.Yogev-Falach M, Amit T, Bar-Am O, Sagi Y, Weinstock M, Youdim MBH. Implications of APP processing, PKC and marcks-phospharylation by rasagiline. Neural Plast. 2002;9:124–124. [Google Scholar]
  • 78.Shaw KT, Utsuki T, Rogers J, et al. Phenserine regulates translation of beta-amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc Natl Acad Sci U S A. 2001;98:7605–7610. doi: 10.1073/pnas.131152998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Greig NH, Utsuki T, Yu Q, et al. A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Cuir Med Res Opin. 2001;17:159–165. doi: 10.1185/0300799039117057. [DOI] [PubMed] [Google Scholar]
  • 80.Chong YH, Suh YH. Amyloidogenic processing of Alzheimer’s amyloid precursor protein in vitro and its modulation by metal ions and tacrine. Life Sci. 1996;59:545–557. doi: 10.1016/0024-3205(96)00335-9. [DOI] [PubMed] [Google Scholar]
  • 81.Lahiri DK, Farlow MR, Nurnberger JI, Greig NH. Effects of cholinesterase inhibitors on the secretion of beta-amyloid precursor protein in cell cultures. Ann N Y Acad Sci. 1997;826:416–421. doi: 10.1111/j.1749-6632.1997.tb48495.x. [DOI] [PubMed] [Google Scholar]
  • 82.Racchi M, Sironi M, Caprera A, König G, Govoni S. Short and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol Psychiatry. 2001;6:520–528. doi: 10.1038/sj.mp.4000878. [DOI] [PubMed] [Google Scholar]
  • 83.Mazzucchelli M, Porrello E, Villetti G, Pietra C, Govoni S, Racchi M. Characterization of the effect of ganstigmine (CHF2819) on amyloid precursor protein metabolism in SH-SY5Y neuroblastoma cells. J Neural Transm. 2003;110:935–947. doi: 10.1007/s00702-003-0006-x. [DOI] [PubMed] [Google Scholar]
  • 84.Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90:1489–1499. doi: 10.1111/j.1471-4159.2004.02680.x. [DOI] [PubMed] [Google Scholar]
  • 85.Lahiri DK, Farlow MR. Differential effect of tacrine and physostigmine on the secretion of the beta-amyloid precursor protein in cell lines. J Mol Neurosci. 1996;7:41–49. doi: 10.1007/BF02736847. [DOI] [PubMed] [Google Scholar]
  • 86.Pakaski M, Rakonczay Z, Kasa P. Reversible and irreversible acetylcholinesterase inhibitors cause changes in neuronal amyloid precursor protein processing and protein kinase C level in vitro. Neurochem Int. 2001;38:219–226. doi: 10.1016/s0197-0186(00)00091-7. [DOI] [PubMed] [Google Scholar]
  • 87.Zhang HY, Yan H, Tang XC. Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-alpha in intracerebroventricular beta-amyloid-(1–40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett. 2004;360:21–24. doi: 10.1016/j.neulet.2004.01.055. [DOI] [PubMed] [Google Scholar]
  • 88.Mamelak M. Alzheimer’s disease, oxidative stress and gamma-hydroxybutyrate. Neurobiol Aging. 2007;28:1340–1360. doi: 10.1016/j.neurobiolaging.2006.06.008. [DOI] [PubMed] [Google Scholar]
  • 89.Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–767. doi: 10.1093/jnen/60.8.759. [DOI] [PubMed] [Google Scholar]
  • 90.Rhee SG, Kim KH, Chae HZ, et al. Antioxidant defense mechanisms: a new thiol-specific antioxidant enzyme. Ann N Y Acad Sci. 1994;738:86–92. doi: 10.1111/j.1749-6632.1994.tb21793.x. [DOI] [PubMed] [Google Scholar]
  • 91.Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8:243–270. doi: 10.1089/ars.2006.8.243. [DOI] [PubMed] [Google Scholar]
  • 92.Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
  • 93.Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18:685–716. doi: 10.2165/00002512-200118090-00004. [DOI] [PubMed] [Google Scholar]
  • 94.Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol. 2007;564:18–25. doi: 10.1016/j.ejphar.2007.01.089. [DOI] [PubMed] [Google Scholar]
  • 95.Schallreuter KU, Elwary S. Hydrogen peroxide regulates the cholinergic signal in a concentration dependent manner. Life Sci. 2007;80:2221–2226. doi: 10.1016/j.lfs.2007.01.028. [DOI] [PubMed] [Google Scholar]
  • 96.Xiao XQ, Lee NT, Carlier PR, Pang Y, Han YF. Bis(7)-tacrine, a promising anti-Alzheimer’s agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cells: comparison with tacrine. Neurosci Lett. 2000;290:197–200. doi: 10.1016/s0304-3940(00)01357-4. [DOI] [PubMed] [Google Scholar]
  • 97.Xiao XQ, Yang JW, Tang XC. Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci Lett. 1999;275:73–76. doi: 10.1016/s0304-3940(99)00695-3. [DOI] [PubMed] [Google Scholar]
  • 98.Bar-Am O, Weinreb O, Amit T, Youdim MB. The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J Mol Neurosci 2008. DOI 10.1007/s12031-008-9139-6. [DOI] [PubMed]
  • 99.Weinreb O, Bar-Am O, Amit T, Drigues N, Sagi Y, Youdim MB. The neuroprotective effect of ladostigil against hydrogen peroxide-mediated cytotoxicity. Chem Biol Interact. 2008;175:318–326. doi: 10.1016/j.cbi.2008.05.038. [DOI] [PubMed] [Google Scholar]
  • 100.Ba F, Pang PK, Benishin CG. The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods. 2003;123:11–22. doi: 10.1016/s0165-0270(02)00324-2. [DOI] [PubMed] [Google Scholar]
  • 101.Stringer JL, Gaikwad A, Gonzales BN, Long DJ, Marks LM, Jaiswal AK. Presence and induction of the enzyme NAD(P)H: quinone oxidoreductase 1 in the central nervous system. J Comp Neurol. 2004;471:289–297. doi: 10.1002/cne.20048. [DOI] [PubMed] [Google Scholar]
  • 102.Zafar KS, Inayat-Hussain SH, Siegel D, Bao A, Shieh B, Ross D. Overexpression of NQO1 protects human SK-N-MC neuroblastoma cells against dopamine-induced cell death. Toxicol Lett. 2006;166:261–267. doi: 10.1016/j.toxlet.2006.07.340. [DOI] [PubMed] [Google Scholar]
  • 103.SantaCruz KS, Yazlovitskaya E, Collins J, Johnson J, DeCarli C. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging. 2004;25:63–69. doi: 10.1016/s0197-4580(03)00117-9. [DOI] [PubMed] [Google Scholar]
  • 104.Maruyama W, Naoi M. Neuroprotection by (−)-deprenyl and related compounds. Mech Ageing Dev. 1999;111:189–200. doi: 10.1016/s0047-6374(99)00066-4. [DOI] [PubMed] [Google Scholar]
  • 105.Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Shoami E, Y MBH. Cell culture and in vivo neuroprotective effects of novel cholinesterase-MAO inhibitors, derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci. 2000;939:148–161. doi: 10.1111/j.1749-6632.2001.tb03622.x. [DOI] [PubMed] [Google Scholar]
  • 106.Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on Superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci. 2000;67:577–585. doi: 10.1016/s0024-3205(00)00643-3. [DOI] [PubMed] [Google Scholar]
  • 107.Dragoni S, Porcari V, Travagli M, Castagnolo D, Valoti M. Antioxidant properties of propargylamine derivatives: assessment of their ability to scavenge peroxynitrite. J Pharm Pharmacol. 2006;58:561–565. doi: 10.1211/jpp.58.4.0016. [DOI] [PubMed] [Google Scholar]
  • 108.Yang L, He HY, Zhang XJ. Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res. 2002;42:261–268. doi: 10.1016/s0168-0102(02)00005-6. [DOI] [PubMed] [Google Scholar]
  • 109.Toiber D, Soreq H. Cellular stress reactions as putative cholinergic links in Alzheimer’s disease. Neurochem Res. 2005;30:909–919. doi: 10.1007/s11064-005-6963-8. [DOI] [PubMed] [Google Scholar]
  • 110.Calderon FH, von Bemhardi R, De Ferrari G, Luza S, Aldunate R, Inestrosa NC. Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol Psychiatry. 1998;3:247–255. doi: 10.1038/sj.mp.4000383. [DOI] [PubMed] [Google Scholar]
  • 111.Villarroya M, Garcia AG, Marco JL. New classes of AChE inhibitors with additional pharmacological effects of interest for the treatment of Alzheimer’s disease. Curr Pharm Des. 2004;10:3177–3184. doi: 10.2174/1381612043383368. [DOI] [PubMed] [Google Scholar]
  • 112.Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals. 2005;14:71–82. doi: 10.1159/000085387. [DOI] [PubMed] [Google Scholar]
  • 113.Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76:1–10. doi: 10.1046/j.1471-4159.2001.00054.x. [DOI] [PubMed] [Google Scholar]
  • 114.Luques L, Shoham S, Weinstock M. Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: prevention by ladostigil. Exp Neurol. 2007;206:209–219. doi: 10.1016/j.expneurol.2007.04.007. [DOI] [PubMed] [Google Scholar]
  • 115.Weinreb O, Amit T, Bar-am O, Youdim MBH. Induction of the neurotrophic factors, GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: New insights and implication for therapy. Ann N Y Acad Sci. 2007;1122:155–168. doi: 10.1196/annals.1403.011. [DOI] [PubMed] [Google Scholar]
  • 116.Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev. 2000;33:199–227. doi: 10.1016/s0165-0173(00)00030-8. [DOI] [PubMed] [Google Scholar]
  • 117.Shen L, Figurov A, Lu B. Recent progress in studies of neurotrophic factors and their clinical implications. J Mol Med. 1997;75:637–644. doi: 10.1007/s001090050147. [DOI] [PubMed] [Google Scholar]
  • 118.Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1996;19:463–489. doi: 10.1146/annurev.ne.19.030196.002335. [DOI] [PubMed] [Google Scholar]
  • 119.Murakami H, Iwashita T, Asai N, et al. Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by ret with the MEN 2B mutation. Biochem Biophys Res Commun. 1999;262:68–75. doi: 10.1006/bbrc.1999.1186. [DOI] [PubMed] [Google Scholar]
  • 120.Ting JT, Kelley BG, Sullivan JM. Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons. J Neurosci. 2006;26:372–380. doi: 10.1523/JNEUROSCI.3997-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Youdim MB, Fridkin M, Zheng H. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm. 2004;111:1455–1471. doi: 10.1007/s00702-004-0143-x. [DOI] [PubMed] [Google Scholar]
  • 122.Borisenko GG, Kagan VE, Hsia CJ, Schor NF. Interaction between 6-hydroxydopamine and transferrin: “Let my iron go.”. Biochemistry. 2000;39:3392–3400. doi: 10.1021/bi992296v. [DOI] [PubMed] [Google Scholar]
  • 123.van Acker SA, van den Berg DJ, Tromp MN, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20:331–342. doi: 10.1016/0891-5849(95)02047-0. [DOI] [PubMed] [Google Scholar]
  • 124.Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs. 2006;15:873–886. doi: 10.1517/13543784.15.8.873. [DOI] [PubMed] [Google Scholar]
  • 125.Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MB. Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhbitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem. 2007;100:490–502. doi: 10.1111/j.1471-4159.2006.04258.x. [DOI] [PubMed] [Google Scholar]
  • 126.Avramovich-Tirosh Y, Reznichenko L, Amit T, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable ironchelating-antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res. 2007;4:403–411. doi: 10.2174/156720507781788927. [DOI] [PubMed] [Google Scholar]
  • 127.Ward MW, Kogel D, Prehn JH. Neuronal apoptosis: BH3-only proteins the real killers? J Bioenerg Biomembr. 2004;36:295–298. doi: 10.1023/B:JOBB.0000041756.23918.11. [DOI] [PubMed] [Google Scholar]
  • 128.Copani A, Condorelli F, Caruso A, et al. Mitotic signaling by beta-amyloid causes neuronal death. Faseb J. 1999;13:2225–2234. [PubMed] [Google Scholar]
  • 129.Wu Q, Combs C, Cannady SB, Geldmacher DS, Herrup K. Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons. Neurobiol Aging. 2000;21:797–806. doi: 10.1016/s0197-4580(00)00219-0. [DOI] [PubMed] [Google Scholar]
  • 130.Amit T, Avramovich-Tirosh Y, Youdim MB, Mandel S. Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. Faseb J. 2008;22:1296–1305. doi: 10.1096/fj.07-8627rev. [DOI] [PubMed] [Google Scholar]
  • 131.Keith CT, Borisy AA, Stockwell BR. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov. 2005;4:71–78. doi: 10.1038/nrd1609. [DOI] [PubMed] [Google Scholar]
  • 132.Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16:127–136. doi: 10.1016/j.sbi.2006.01.013. [DOI] [PubMed] [Google Scholar]
  • 133.Thal DR, Del Tredici K, Braak H. Neurodegeneration in normal brain aging and disease. Sci Aging Knowledge Environ; 2004:134. [DOI] [PubMed]
  • 134.Youdim MBH, Riederer P. Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm. 1993;91:181–195. doi: 10.1007/BF01245231. [DOI] [PubMed] [Google Scholar]
  • 135.Weinstock M, Goren T, Youdim MBH. Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer’s disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res. 2000;50:216–222. doi: 10.1007/978-3-7091-6301-6_10. [DOI] [PubMed] [Google Scholar]
  • 136.Youdim MB, Amit T, Bar-Am O, Weinstock M, Yogev-Falach M. Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann N Y Acad Sci. 2003;993:378–386. doi: 10.1111/j.1749-6632.2003.tb07548.x. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES