Summary
Recently there has been a resurging interest in developing multi-functional drugs to treat diseases with complex pathological mechanisms. Such drug molecules simultaneously target multiple etiologies that have been found to be important modulators in specific diseases. This approach has significant promise and may be more effective than using one compound specific for one drug target or, by a polypharmaceutical approach, using a cocktail of two or more drugs. Polycyclic ring structures are useful as starting scaffolds in medicinal chemistry programs to develop multi-functional drugs, and may also be useful moieties added to existing structures to improve the pharmacokinetic properties of drugs currently used in the clinic or under development. This review attempts to provide a synopsis of current published research to exemplify the use of polycyclic compounds as starting molecules to develop multi-functional drugs.
Key Words: Multifunctional drugs, pentacycloundecane, polycyclic compounds
References
- 1.Youdim MB, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci. 2005;26:27–35. doi: 10.1016/j.tips.2004.11.007. [DOI] [PubMed] [Google Scholar]
- 2.Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs. 2006;15:873–886. doi: 10.1517/13543784.15.8.873. [DOI] [PubMed] [Google Scholar]
- 3.Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48:6523–6543. doi: 10.1021/jm058225d. [DOI] [PubMed] [Google Scholar]
- 4.Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today. 2004;9:641–651. doi: 10.1016/S1359-6446(04)03163-0. [DOI] [PubMed] [Google Scholar]
- 5.Van der Schyf CJ, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs for the treatment of cognitive and movement impaired disorders, including Alzheimer’s and Parkinson’s diseases. Drugs of the Future. 2006;31:447–460. doi: 10.1358/dof.2006.031.05.985904. [DOI] [Google Scholar]
- 6.Gurwitz JH. Polypharmacy: a new paradigm for quality drug therapy in the elderly? Arch Intern Med. 2004;164:1957–1959. doi: 10.1001/archinte.164.18.1957. [DOI] [PubMed] [Google Scholar]
- 7.Bymaster FP, Beedle EE, Findlay J, et al. Duloxetine (Cymbalta), a dual inhibitor of serotonin and norepinephrine reuptake. Bioorg Med Chem Lett. 2003;13:4477–4480. doi: 10.1016/j.bmcl.2003.08.079. [DOI] [PubMed] [Google Scholar]
- 8.Liang Y, Shaw AM, Boules M, et al. Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS) J Pharmacol Exp Ther. 2008;327:573–583. doi: 10.1124/jpet.108.143610. [DOI] [PubMed] [Google Scholar]
- 9.Shaw AM, Boules M, Zhang Y, et al. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur J Pharmacol. 2007;555:30–36. doi: 10.1016/j.ejphar.2006.10.004. [DOI] [PubMed] [Google Scholar]
- 10.Carlier PR, Lo MM, Lo PC, et al. Synthesis of a potent wide-spectrum serotonin-, norepinephrine-, dopamine-reuptake inhibitor (SNDRI) and a species-selective dopamine-reuptake inhibitor based on the gamma-amino alcohol functional group. Bioorg Med Chem Lett. 1998;8:487–492. doi: 10.1016/S0960-894X(98)00062-6. [DOI] [PubMed] [Google Scholar]
- 11.Gal S, Zheng H, Fridkin M, Youdim MB. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem. 2005;95:79–88. doi: 10.1111/j.1471-4159.2005.03341.x. [DOI] [PubMed] [Google Scholar]
- 12.Zheng H, Weiner LM, Bar-Am O, et al. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem. 2005;13:773–783. doi: 10.1016/j.bmc.2004.10.037. [DOI] [PubMed] [Google Scholar]
- 13.Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5:863–873. doi: 10.1038/nrn1537. [DOI] [PubMed] [Google Scholar]
- 14.Jacobson KA, Xie R, Young L, Chang L, Liang BT. A novel pharmacological approach to treating cardiac ischemia. Binary conjugates of A1 and A3 adenosine receptor agonists. J Biol Chem. 2000;275:30272–30279. doi: 10.1074/jbc.M001520200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Karellas P, McNaughton M, Baker SP, Scammells PJ. Synthesis of bivalent beta2-adrenergic and adenosine A1 receptor ligands. J Med Chem. 2008;51:6128–6137. doi: 10.1021/jm800613s. [DOI] [PubMed] [Google Scholar]
- 16.Maruyama W, Takahashi T, Youdim M, Naoi M. The anti-Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm. 2002;109:467–481. doi: 10.1007/s007020200038. [DOI] [PubMed] [Google Scholar]
- 17.Maruyama W, Yamamoto T, Kitani K, Carrillo MC, Youdim M, Naoi M. Mechanism underlying anti-apoptotic activity of a (−)deprenyl-related propargylamine, rasagiline. Mech Ageing Dev. 2000;116:181–191. doi: 10.1016/S0047-6374(00)00144-5. [DOI] [PubMed] [Google Scholar]
- 18.Naoi M, Maruyama W, Yagi K, Youdim M. Anti-apoptotic function of L-(−)deprenyl (Selegiline) and related compounds. Neurobiology (Bp) 2000;8:69–80. [PubMed] [Google Scholar]
- 19.Naoi M, Maruyama W, Youdim MB, Yu P, Boulton AA. Anti-apoptotic function of propargylamine inhibitors of type-B monoamine oxidase. Inflammopharmacology. 2003;11:175–181. doi: 10.1163/156856003765764344. [DOI] [PubMed] [Google Scholar]
- 20.Youdim MB. The path from anti Parkinson drug selegiline and rasagiline to multifunctional neuroprotective anti Alzheimer drugs ladostigil and m30. Curr Alzheimer Res. 2006;3:541–550. doi: 10.2174/156720506779025288. [DOI] [PubMed] [Google Scholar]
- 21.Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol. 2006;147(suppl 1):S287–296. doi: 10.1038/sj.bjp.0706464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Youdim MB, Weinstock M. Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev. 2002;123:1081–1086. doi: 10.1016/S0047-6374(01)00391-8. [DOI] [PubMed] [Google Scholar]
- 23.Bar-Am O, Weimeb O, Amit T, Youdim MB. The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J Mol Neurosci 2008 Aug 27; [Epub ahead of print]. [DOI] [PubMed]
- 24.Yogev-Falach M, Bar-Am O, Amit T, Weinreb O, Youdim MB. A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. Faseb J. 2006;20:2177–2179. doi: 10.1096/fj.05-4910fje. [DOI] [PubMed] [Google Scholar]
- 25.Sagi Y, Weinstock M, Youdim MB. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem. 2003;86:290–297. doi: 10.1046/j.1471-4159.2003.01801.x. [DOI] [PubMed] [Google Scholar]
- 26.Maruyama W, Weinstock M, Youdim MB, Nagai M, Naoi M. Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett. 2003;341:233–236. doi: 10.1016/S0304-3940(03)00211-8. [DOI] [PubMed] [Google Scholar]
- 27.Weinstock M, Poltyrev T, Bejar C, Youdim MB. Effect of TV3326, a novel monoamine-oxidase cholinesterase inhibitor, in rat models of anxiety and depression. Psychopharmacology (Berl) 2002;160:318–324. doi: 10.1007/s00213-001-0978-x. [DOI] [PubMed] [Google Scholar]
- 28.Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S. Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci. 2001;939:148–161. doi: 10.1111/j.1749-6632.2001.tb03622.x. [DOI] [PubMed] [Google Scholar]
- 29.Weinstock M, Bejar C, Wang RH, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. J Neural Transm Suppl 2000:157–169. [DOI] [PubMed]
- 30.Bachurin S, Bukatina E, Lermontova N, et al. Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci. 2001;939:425–435. doi: 10.1111/j.1749-6632.2001.tb03654.x. [DOI] [PubMed] [Google Scholar]
- 31.Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet. 2008;372:207–215. doi: 10.1016/S0140-6736(08)61074-0. [DOI] [PubMed] [Google Scholar]
- 32.Lermontova NN, Redkozubov AE, Shevtsova EF, Serkova TP, Kireeva EG, Bachurin SO. Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels. Bull Exp Biol Med. 2001;132:1079–1083. doi: 10.1023/A:1017972709652. [DOI] [PubMed] [Google Scholar]
- 33.Grigorev VV, Dranyi OA, Bachurin SO. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull Exp Biol Med. 2003;136:474–477. doi: 10.1023/B:BEBM.0000017097.75818.14. [DOI] [PubMed] [Google Scholar]
- 34.Cookson RC, Grundwell E, Hudec J. Synthesis of cage-like molecules by irradiation of Diels-Alder adducts. Chem Ind 1958:1003–1004.
- 35.Sasaki T, Eguchi S, Kiriyama T, Hiroaki O. Studies on heterocage compounds—VI transannular cyclizations in pentacyclo [6.2.1.0.(2,7)0.(4,10)0.(5,9)]undecan-3,6-dione system. Tetrahedron. 1974;30:2707–2712. doi: 10.1016/S0040-4020(01)97433-2. [DOI] [Google Scholar]
- 36.Sasaki T, Eguchi S, Kiriyama T. A facile synthesis of mono-oxa- and -aza-bird-cage compounds transannular cyclization. Tetrahedron Lett. 1971;12:2651–2654. doi: 10.1016/S0040-4039(01)96942-4. [DOI] [Google Scholar]
- 37.Marchand AP, Arney BE, Dave PR, Satyanarayana N, Watson WH, Nagl A. Transannular cyclizations in the pentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione system. A reinvestigation. J Org Chem. 1988;53:2644–2647. doi: 10.1021/jo00246a053. [DOI] [Google Scholar]
- 38.Geldenhuys WJ, Malan SF, Bloomquist JR, Marchand AP, Van der Schyf CJ. Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives. Med Res Rev. 2005;25:21–48. doi: 10.1002/med.20013. [DOI] [PubMed] [Google Scholar]
- 39.Van der Schyf CJ, Squier GJ, Coetzee WA. Characterization of NGP 1-01, an aromatic polycyclic amine, as a calcium antagonist. Pharmacol Res Commun. 1986;18:407–417. doi: 10.1016/0031-6989(86)90162-1. [DOI] [PubMed] [Google Scholar]
- 40.Kiewert C, Hartmann J, Stoll J, Thekkumkara TJ, Van der Schyf CJ, Klein J. NGP1-01 is a brain-permeable dual blocker of neuronal voltage- and ligand-operated calcium channels. Neurochem Res. 2006;31:395–399. doi: 10.1007/s11064-005-9036-0. [DOI] [PubMed] [Google Scholar]
- 41.Malan SF, Van der Walt JJ, Van der Schyf CJ. Structure-activity relationships of polycyclic aromatic amines with calcium channel blocking activity. Arch Pharm (Weinheim) 2000;333:10–16. doi: 10.1002/(SICI)1521-4184(200001)333:1<10::AID-ARDP10>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- 42.Malan SF, Dyason K, Wagenaar B, Van Der Walt JJ, Van Der Schyf CJ. The structure and ion channel activity of 6-benzylamino-3-hydroxyhexa-cyclo[6.5.0.0(3,7).0(4,12).0(5,10).0(9,13]trid ecane. Arch Pharm (Weinheim) 2003;336:127–133. doi: 10.1002/ardp.200390009. [DOI] [PubMed] [Google Scholar]
- 43.Thomas D, Wendt-Nordahl G, Rockl K, Ficker E, Brown AM, Kiehn J. High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel anti-arrhythmic drug BRL-32872. J Pharmacol Exp Ther. 2001;297:753–761. [PubMed] [Google Scholar]
- 44.Nadler G, Faivre JF, Forest MC, et al. Synthesis, electrophysiological properties and analysis of structural requirements of a novel class of antiarrhythmic agents with potassium and calcium channel blocking properties. Bioorg Med Chem. 1998;6:1993–2011. doi: 10.1016/S0968-0896(98)00166-7. [DOI] [PubMed] [Google Scholar]
- 45.O’Neill MJ, Bath CP, Dell CP, et al. Effects of Ca2+ and Na+ channel inhibitors in vitro and in global cerebral ischaemia in vivo. Eur J Pharmacol. 1997;332:121–131. doi: 10.1016/S0014-2999(97)01074-1. [DOI] [PubMed] [Google Scholar]
- 46.Geldenhuys WJ, Malan SF, Bloomquist JR, Van der Schyf CJ. Structure-activity relationships of pentacycloundecylamines at the N-methyl-d-aspartate receptor. Bioorg Med Chem. 2007;15:1525–1532. doi: 10.1016/j.bmc.2006.09.060. [DOI] [PubMed] [Google Scholar]
- 47.Bresink I, Danysz W, Parsons CG, Mutschier E. Different binding affinities of NMDA receptor channel blockers in various brain regions-indication of NMDA receptor heterogeneity. Neuropharmacology. 1995;34:533–540. doi: 10.1016/0028-3908(95)00017-Z. [DOI] [PubMed] [Google Scholar]
- 48.Mdzinarishvili A, Geldenhuys WJ, Abbruscato TJ, Bickel U, Klein J, Van der Schyf CJ. NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia. Neurosci Lett. 2005;383:49–53. doi: 10.1016/j.neulet.2005.03.042. [DOI] [PubMed] [Google Scholar]
- 49.Hao J, Mdzinarishvili A, Abbruscato TJ, et al. Neuroprotection in mice by NGP1-01 after transient focal brain ischemia. Brain Res. 2008;1196:113–120. doi: 10.1016/j.brainres.2007.11.075. [DOI] [PubMed] [Google Scholar]
- 50.Geldenhuys WJ, Terre’Blanche G, Van der Schyf CJ, Malan SF. Screening of novel pentacyclo-undecylamines for neuroprotective activity. Eur J Pharmacol. 2003;458:73–79. doi: 10.1016/S0014-2999(02)02701-2. [DOI] [PubMed] [Google Scholar]
- 51.Carvey PM, Punati A, Newman MB. Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transplant. 2006;15:239–250. doi: 10.3727/000000006783981990. [DOI] [PubMed] [Google Scholar]
- 52.Przedborski S, Tieu K, Perier C, Vila M. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr. 2004;36:375–379. doi: 10.1023/B:JOBB.0000041771.66775.d5. [DOI] [PubMed] [Google Scholar]
- 53.Jakowec MW, Petzinger GM. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med. 2004;54:497–513. [PubMed] [Google Scholar]
- 54.Komhuber J, Schoppmeyer K, Riederer P. Affinity of 1-aminoadamantanes for the sigma binding site in post-mortem human frontal cortex. Neurosci Lett. 1993;163:129–131. doi: 10.1016/0304-3940(93)90362-O. [DOI] [PubMed] [Google Scholar]
- 55.Nguyen VH, Kassiou M, Johnston GA, Christic MJ. Comparison of binding parameters of sigma 1 and sigma 2 binding sites in rat and guinea pig brain membranes: novel subtype-selective trisho-mocubanes. Eur J Pharmacol. 1996;311:233–240. doi: 10.1016/0014-2999(96)00395-0. [DOI] [PubMed] [Google Scholar]
- 56.Kassiou M, Nguyen VH, Knott R, Christic MJ, Hambley TW. Trishomocubanes, a new class of selective and high affinity ligands for the sigma binding site. Bioorg Med Chem Lett. 1996;6:595–600. doi: 10.1016/0960-894X(96)00067-4. [DOI] [Google Scholar]
- 57.Liu X, Banister SD, Christic MJ, et al. Trishomocubanes: novel sigma ligands modulate cocaine-induced behavioural effects. Eur J Pharmacol. 2007;555:37–42. doi: 10.1016/j.ejphar.2006.10.020. [DOI] [PubMed] [Google Scholar]
- 58.Liu X, Nuwayhid S, Christic MJ, Kassiou M, Werling LL. Trishomocubanes: novel sigma-receptor ligands modulate amphetamine-stimulated [3H]dopamine release. Eur J Pharmacol. 2001;422:39–45. doi: 10.1016/S0014-2999(01)01071-8. [DOI] [PubMed] [Google Scholar]
- 59.Kent GJ, Godleski SA, Osawa E, Schleyer PvR. Syntheses and relative stability of (D3)-trishomocubane (pentacyclo[6.3.0.02, 6.03,10.05,9]undecane), the pentacycloundecane stabilomer. J Med Chem. 1977;42:3852–3859. [Google Scholar]
- 60.Oliver DW, Dekker TG, Snyckers FO, Fouric TG. Synthesis and biological activity of D3-trishomocubyl-4-amines. J Med Chem. 1991;34:851–854. doi: 10.1021/jm00106a053. [DOI] [PubMed] [Google Scholar]
- 61.Oliver DW, Dekker TG, Snyckers FO. Antiviral properties of 4-amino-(D3)-trishomocubanes. Arzneimittelforschung. 1991;41:549–552. [PubMed] [Google Scholar]
- 62.Singh V, Thomas B. Recent developments in general methodologies for the synthesis of linear triquinanest. Tetrahedron. 1998;54:3647–3692. doi: 10.1016/S0040-4020(97)10426-4. [DOI] [Google Scholar]
- 63.Liebenberg W, Van Rooyen PH, Van Der Schyf CJ. The biological activity of two symmetric amine derivatives of the cis-syn-cis triquinane system. Pharmazic. 1996;51:20–24. [PubMed] [Google Scholar]
- 64.Bezuidenhout LM, Geldenhuys WJ, Malan SF, Van der Schyf CJ. Polycyclic amine derivatives: The synthesis of triquinylamines as calcium modulators. Poster, American Chemical Society, 233rd National Meeting, Chicago, IL, 2007.
- 65.Schleyer PvR. A simple preparation of adamantane. J Am Chem Soc. 1957;79:3292–3292. doi: 10.1021/ja01569a086. [DOI] [Google Scholar]
- 66.Marchand AP. Chemistry. Diamondoid hydrocarbons-delving into nature’s bounty. Science. 2003;299:52–53. doi: 10.1126/science.1079630. [DOI] [PubMed] [Google Scholar]
- 67.Tilley JW, Kramer MJ. Aminoadamantane derivatives. Prog Med Chem. 1981;18:1–44. doi: 10.1016/S0079-6468(08)70315-1. [DOI] [PubMed] [Google Scholar]
- 68.Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5:160–170. doi: 10.1038/nrd1958. [DOI] [PubMed] [Google Scholar]
- 69.Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97:1611–1626. doi: 10.1111/j.1471-4159.2006.03991.x. [DOI] [PubMed] [Google Scholar]
- 70.Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology. 1999;38:735–767. doi: 10.1016/S0028-3908(99)00019-2. [DOI] [PubMed] [Google Scholar]
- 71.Kemp JA, McKeman RM. NMDA receptor pathways as drug targets. Nat Neurosci. 2002;5:1039–1042. doi: 10.1038/nn936. [DOI] [PubMed] [Google Scholar]
- 72.Choi YB, Tenneti L, Le DA, et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci. 2000;3:15–21. doi: 10.1038/71090. [DOI] [PubMed] [Google Scholar]
- 73.Wang Y, Eu J, Washbum M, et al. The pharmacology of aminoadamantane nitrates. Curr Alzheimer Res. 2006;3:201–204. doi: 10.2174/156720506777632808. [DOI] [PubMed] [Google Scholar]
- 74.Igumnova ND, Lemina E, Bitiukova II, Klimova NV, Skoldinov AP. Hydrolysis by plasma cholinesterase of complex adamantyl-containing esters. Farmakol Toksikol. 1988;51:38–41. [PubMed] [Google Scholar]
- 75.Tsuzuki N, Hama T, Kawada M, et al. Adamantane as a brain-directed drug carrier for poorly absorbed drug. 2. AZT derivatives conjugated with the 1-adamantane moiety. J Pharm Sci. 1994;83:481–484. doi: 10.1002/jps.2600830407. [DOI] [PubMed] [Google Scholar]
- 76.Gerzon K, Krumkalns EV, Brindle RL, Marshall FJ, Root MA. The Adamantyl Group in Medicinal Agents. I. Hypoglycemic N-Arylsulfonyl-N′-Adamantylureas. J Med Chem. 1963;6:760–763. doi: 10.1021/jm00342a029. [DOI] [PubMed] [Google Scholar]
- 77.Gerzon K, Kau D. The adamantyl group in medicinal agents. 3. Nucleoside 5′-adamantoates. The adamantoyl function as a protecting group. J Med Chem. 1967;10:189–199. doi: 10.1021/jm00314a014. [DOI] [PubMed] [Google Scholar]
- 78.Lavreysen H, Janssen C, Bischoff F, Langlois X, Leysen JE, Lesage AS. [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol. 2003;63:1082–1093. doi: 10.1124/mol.63.5.1082. [DOI] [PubMed] [Google Scholar]
- 79.Schreiner EP, Wolff B, Winiski AP, Billich A. 6-(2-adamantan-2-ylidene-hydroxybenzoxazole)-O-sulfamate: a potent non-steroidal irreversible inhibitor of human steroid sulfatase. Bioorg Med Chem Lett. 2003;13:4313–4316. doi: 10.1016/j.bmcl.2003.09.050. [DOI] [PubMed] [Google Scholar]
- 80.Abou-Gharbia MA, Childers WE, Fletcher H, et al. Synthesis and SAR of adatanserin: novel adamantyl aryl- and heteroarylpiperazines with dual serotonin 5-HT(1A) and 5-HT(2) activity as potential anxiolytic and antidepressant agents. J Med Chem. 1999;42:5077–5094. doi: 10.1021/jm9806704. [DOI] [PubMed] [Google Scholar]
- 81.Augeri DJ, Robl JA, Betebenner DA, et al. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48:5025–5037. doi: 10.1021/jm050261p. [DOI] [PubMed] [Google Scholar]