Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2310–2314. doi: 10.1172/JCI119769

Angiotensin II stimulates proliferation of normal early erythroid progenitors.

M Mrug 1, T Stopka 1, B A Julian 1, J F Prchal 1, J T Prchal 1
PMCID: PMC508427  PMID: 9410909

Abstract

Angiotensin II exerts a mitogenic effect in several in vitro models, but a direct effect on erythroid progenitors has not been documented. Angiotensin-converting enzyme inhibitors and losartan, an angiotensin II type 1 receptor (AT1) antagonist, ameliorate posttransplant erythrocytosis, without altering serum erythropoietin levels. We studied erythroid differentiation and the effect of angiotensin II on proliferation of erythroid progenitors by culturing CD34+ hematopoietic progenitor cells in liquid serum-free medium favoring growth of erythroid precursors. Aliquots of cells were collected every third day, and were used for RNA preparation. AT1 mRNA was detected after 6 d. In these same samples, erythroid-specific mRNA (erythropoietin receptor) was also detected. AT1 protein was detected in 7-d-old burst-forming units-erythroid colonies by Western blotting. The CD34+ cell liquid cultures were used to incubate erythroid precursors with angiotensin II from days 6-9. After incubation, cells were transferred to semisolid medium and cultured with erythropoietin. Angiotensin II increased proliferation of early erythroid progenitors, defined as increased numbers of burst-forming units-erythroid colonies. Losartan completely abolished this stimulatory effect of angiotensin II. Moreover, we observed increased numbers of erythroid progenitors in the peripheral blood of posttransplant erythrocytosis patients. Thus, activation of AT1 with angiotensin II enhances erythropoietin-stimulated erythroid proliferation in vitro. A putative defect in the angiotensin II/AT1 pathway may contribute to the pathogenesis of posttransplant erythrocytosis.

Full Text

The Full Text of this article is available as a PDF (236.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein A., Forrester L., Reith A. D., Dubreuil P., Rottapel R. The murine W/c-kit and Steel loci and the control of hematopoiesis. Semin Hematol. 1991 Apr;28(2):138–142. [PubMed] [Google Scholar]
  2. Cashman J. D., Eaves A. C., Raines E. W., Ross R., Eaves C. J. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-beta. Blood. 1990 Jan 1;75(1):96–101. [PubMed] [Google Scholar]
  3. Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987 Jun 5;236(4806):1229–1237. doi: 10.1126/science.3296190. [DOI] [PubMed] [Google Scholar]
  4. Danovitch G. M., Jamgotchian N. J., Eggena P. H., Paul W., Barrett J. D., Wilkinson A., Lee D. B. Angiotensin-converting enzyme inhibition in the treatment of renal transplant erythrocytosis. Clinical experience and observation of mechanism. Transplantation. 1995 Jul 27;60(2):132–137. [PubMed] [Google Scholar]
  5. Eaves C. J., Eaves A. C. Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood. 1978 Dec;52(6):1196–1210. [PubMed] [Google Scholar]
  6. Jackson T. R., Blair L. A., Marshall J., Goedert M., Hanley M. R. The mas oncogene encodes an angiotensin receptor. Nature. 1988 Sep 29;335(6189):437–440. doi: 10.1038/335437a0. [DOI] [PubMed] [Google Scholar]
  7. Jiang N., He T. C., Miyajima A., Wojchowski D. M. The box1 domain of the erythropoietin receptor specifies Janus kinase 2 activation and functions mitogenically within an interleukin 2 beta-receptor chimera. J Biol Chem. 1996 Jul 12;271(28):16472–16476. doi: 10.1074/jbc.271.28.16472. [DOI] [PubMed] [Google Scholar]
  8. Julian B. A., Gaston R. S., Barker C. V., Krystal G., Diethelm A. G., Curtis J. J. Erythropoiesis after withdrawal of enalapril in post-transplant erythrocytosis. Kidney Int. 1994 Nov;46(5):1397–1403. doi: 10.1038/ki.1994.411. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Linnekin D., Weiler S. R., Mou S., DeBerry C. S., Keller J. R., Ruscetti F. W., Ferris D. K., Longo D. L. JAK2 is constitutively associated with c-Kit and is phosphorylated in response to stem cell factor. Acta Haematol. 1996;95(3-4):224–228. doi: 10.1159/000203882. [DOI] [PubMed] [Google Scholar]
  11. Liu Y., Phelan J., Go R. C., Prchal J. F., Prchal J. T. Rapid determination of clonality by detection of two closely-linked X chromosome exonic polymorphisms using allele-specific PCR. J Clin Invest. 1997 Apr 15;99(8):1984–1990. doi: 10.1172/JCI119366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prchal J. F., Adamson J. W., Steinmann L., Fialkow P. J. Human erythroid colony formation in vitro: evidence for clonal origin. J Cell Physiol. 1976 Nov;89(3):489–492. doi: 10.1002/jcp.1040890314. [DOI] [PubMed] [Google Scholar]
  13. Prchal J. F., Axelrad A. A. Letter: Bone-marrow responses in polycythemia vera. N Engl J Med. 1974 Jun 13;290(24):1382–1382. doi: 10.1056/nejm197406132902419. [DOI] [PubMed] [Google Scholar]
  14. Quelle F. W., Sato N., Witthuhn B. A., Inhorn R. C., Eder M., Miyajima A., Griffin J. D., Ihle J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994 Jul;14(7):4335–4341. doi: 10.1128/mcb.14.7.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shao L., Frigon N. L., Jr, Sehy D. W., Yu A. L., Lofgren J., Schwall R., Yu J. Regulation of production of activin A in human marrow stromal cells and monocytes. Exp Hematol. 1992 Nov;20(10):1235–1242. [PubMed] [Google Scholar]
  16. Shibata H., Suzuki H., Murakami M., Sato A., Saruta T. Angiotensin II type 1 receptor messenger RNA levels in human blood cells of patients with primary and secondary hypertension: reference to renin profile. J Hypertens. 1994 Nov;12(11):1275–1284. [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang Y., Fuller G. M. Phosphorylation and internalization of gp130 occur after IL-6 activation of Jak2 kinase in hepatocytes. Mol Biol Cell. 1994 Jul;5(7):819–828. doi: 10.1091/mbc.5.7.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang Y., Morella K. K., Ripperger J., Lai C. F., Gearing D. P., Fey G. H., Campos S. P., Baumann H. Receptors for interleukin-3 (IL-3) and growth hormone mediate an IL-6-type transcriptional induction in the presence of JAK2 or STAT3. Blood. 1995 Sep 1;86(5):1671–1679. [PubMed] [Google Scholar]
  20. Weber H., Taylor D. S., Molloy C. J. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. Correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest. 1994 Feb;93(2):788–798. doi: 10.1172/JCI117033. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES