Abstract
Using quantitative RT-PCR in RNA from right ventricular (RV) endomyocardial biopsies from intact nonfailing hearts, and subjects with moderate RV failure from primary pulmonary hypertension (PPH) or idiopathic dilated cardiomyopathy (IDC), we measured expression of genes involved in regulation of contractility or hypertrophy. Gene expression was also assessed in LV (left ventricular) and RV free wall and RV endomyocardium of hearts from end-stage IDC subjects undergoing heart transplantation or from nonfailing donors. In intact failing hearts, downregulation of beta1-receptor mRNA and protein, upregulation of atrial natriuretic peptide mRNA expression, and increased myocyte diameter indicated similar degrees of failure and hypertrophy in the IDC and PPH phenotypes. The only molecular phenotypic difference between PPH and IDC RVs was upregulation of beta2-receptor gene expression in PPH but not IDC. The major new findings were that (a) both nonfailing intact and explanted human ventricular myocardium expressed substantial amounts of alpha-myosin heavy chain mRNA (alpha-MHC, 23-34% of total), and (b) in heart failure alpha-MHC was downregulated (by 67-84%) and beta-MHC gene expression was upregulated. We conclude that at the mRNA level nonfailing human heart expresses substantial alpha-MHC. In myocardial failure this alteration in gene expression of MHC isoforms, if translated into protein expression, would decrease myosin ATPase enzyme velocity and slow speed of contraction.
Full Text
The Full Text of this article is available as a PDF (282.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALPERT N. R., GORDON M. S. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol. 1962 May;202:940–946. doi: 10.1152/ajplegacy.1962.202.5.940. [DOI] [PubMed] [Google Scholar]
- Alousi A. A., Grant A. M., Etzler J. R., Cofer B. R., Van der Bel-Kahn J., Melvin D. Reduced cardiac myofibrillar Mg-ATPase activity without changes in myosin isozymes in patients with end-stage heart failure. Mol Cell Biochem. 1990 Jul 17;96(1):79–88. doi: 10.1007/BF00228455. [DOI] [PubMed] [Google Scholar]
- Brillantes A. M., Allen P., Takahashi T., Izumo S., Marks A. R. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res. 1992 Jul;71(1):18–26. doi: 10.1161/01.res.71.1.18. [DOI] [PubMed] [Google Scholar]
- Bristow M. R., Anderson F. L., Port J. D., Skerl L., Hershberger R. E., Larrabee P., O'Connell J. B., Renlund D. G., Volkman K., Murray J. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation. 1991 Sep;84(3):1024–1039. doi: 10.1161/01.cir.84.3.1024. [DOI] [PubMed] [Google Scholar]
- Bristow M. R. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol. 1993 Oct;22(4 Suppl A):61A–71A. doi: 10.1016/0735-1097(93)90465-d. [DOI] [PubMed] [Google Scholar]
- Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986 Sep;59(3):297–309. doi: 10.1161/01.res.59.3.297. [DOI] [PubMed] [Google Scholar]
- Bristow M. R., Minobe W. A., Raynolds M. V., Port J. D., Rasmussen R., Ray P. E., Feldman A. M. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest. 1993 Dec;92(6):2737–2745. doi: 10.1172/JCI116891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bristow M. R., Minobe W., Rasmussen R., Larrabee P., Skerl L., Klein J. W., Anderson F. L., Murray J., Mestroni L., Karwande S. V. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992 Mar;89(3):803–815. doi: 10.1172/JCI115659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodde O. E., Khamssi M., Zerkowski H. R. Beta-adrenoceptors in the transplanted human heart: unaltered beta-adrenoceptor density, but increased proportion of beta 2-adrenoceptors with increasing posttransplant time. Naunyn Schmiedebergs Arch Pharmacol. 1991 Oct;344(4):430–436. doi: 10.1007/BF00172582. [DOI] [PubMed] [Google Scholar]
- Brodde O. E., Schüler S., Kretsch R., Brinkmann M., Borst H. G., Hetzer R., Reidemeister J. C., Warnecke H., Zerkowski H. R. Regional distribution of beta-adrenoceptors in the human heart: coexistence of functional beta 1- and beta 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol. 1986 Nov-Dec;8(6):1235–1242. doi: 10.1097/00005344-198611000-00021. [DOI] [PubMed] [Google Scholar]
- Brodde O. E., Zerkowski H. R., Doetsch N., Motomura S., Khamssi M., Michel M. C. Myocardial beta-adrenoceptor changes in heart failure: concomitant reduction in beta 1- and beta 2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol. 1989 Aug;14(2):323–331. doi: 10.1016/0735-1097(89)90181-2. [DOI] [PubMed] [Google Scholar]
- Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark W. A., Jr, Chizzonite R. A., Everett A. W., Rabinowitz M., Zak R. Species correlations between cardiac isomyosins. A comparison of electrophoretic and immunological properties. J Biol Chem. 1982 May 25;257(10):5449–5454. [PubMed] [Google Scholar]
- Dorn G. W., 2nd, Robbins J., Ball N., Walsh R. A. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am J Physiol. 1994 Jul;267(1 Pt 2):H400–H405. doi: 10.1152/ajpheart.1994.267.1.H400. [DOI] [PubMed] [Google Scholar]
- Engelhardt S., Böhm M., Erdmann E., Lohse M. J. Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol. 1996 Jan;27(1):146–154. doi: 10.1016/0735-1097(95)00425-4. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Ray P. E., Bristow M. R. Expression of alpha-subunits of G proteins in failing human heart: a reappraisal utilizing quantitative polymerase chain reaction. J Mol Cell Cardiol. 1991 Dec;23(12):1355–1358. doi: 10.1016/0022-2828(91)90182-l. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Ray P. E., Silan C. M., Mercer J. A., Minobe W., Bristow M. R. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991 Jun;83(6):1866–1872. doi: 10.1161/01.cir.83.6.1866. [DOI] [PubMed] [Google Scholar]
- Frielle T., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7920–7924. doi: 10.1073/pnas.84.22.7920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldspink P. H., Thomason D. B., Russell B. Beating affects the posttranscriptional regulation of alpha-myosin mRNA in cardiac cultures. Am J Physiol. 1996 Dec;271(6 Pt 2):H2584–H2590. doi: 10.1152/ajpheart.1996.271.6.H2584. [DOI] [PubMed] [Google Scholar]
- Gorza L., Mercadier J. J., Schwartz K., Thornell L. E., Sartore S., Schiaffino S. Myosin types in the human heart. An immunofluorescence study of normal and hypertrophied atrial and ventricular myocardium. Circ Res. 1984 Jun;54(6):694–702. doi: 10.1161/01.res.54.6.694. [DOI] [PubMed] [Google Scholar]
- Greenberg B. D., Bencen G. H., Seilhamer J. J., Lewicki J. A., Fiddes J. C. Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor. Nature. 1984 Dec 13;312(5995):656–658. doi: 10.1038/312656a0. [DOI] [PubMed] [Google Scholar]
- Hajjar R. J., Gwathmey J. K. Cross-bridge dynamics in human ventricular myocardium. Regulation of contractility in the failing heart. Circulation. 1992 Dec;86(6):1819–1826. doi: 10.1161/01.cir.86.6.1819. [DOI] [PubMed] [Google Scholar]
- Hasenfuss G., Reinecke H., Studer R., Meyer M., Pieske B., Holtz J., Holubarsch C., Posival H., Just H., Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994 Sep;75(3):434–442. doi: 10.1161/01.res.75.3.434. [DOI] [PubMed] [Google Scholar]
- Hirzel H. O., Tuchschmid C. R., Schneider J., Krayenbuehl H. P., Schaub M. C. Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res. 1985 Nov;57(5):729–740. doi: 10.1161/01.res.57.5.729. [DOI] [PubMed] [Google Scholar]
- Ito H., Miller S. C., Billingham M. E., Akimoto H., Torti S. V., Wade R., Gahlmann R., Lyons G., Kedes L., Torti F. M. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4275–4279. doi: 10.1073/pnas.87.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumo S., Lompré A. M., Matsuoka R., Koren G., Schwartz K., Nadal-Ginard B., Mahdavi V. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987 Mar;79(3):970–977. doi: 10.1172/JCI112908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones W. K., Grupp I. L., Doetschman T., Grupp G., Osinska H., Hewett T. E., Boivin G., Gulick J., Ng W. A., Robbins J. Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J Clin Invest. 1996 Oct 15;98(8):1906–1917. doi: 10.1172/JCI118992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kariya K., Karns L. R., Simpson P. C. An enhancer core element mediates stimulation of the rat beta-myosin heavy chain promoter by an alpha 1-adrenergic agonist and activated beta-protein kinase C in hypertrophy of cardiac myocytes. J Biol Chem. 1994 Feb 4;269(5):3775–3782. [PubMed] [Google Scholar]
- Kobilka B. K., Frielle T., Dohlman H. G., Bolanowski M. A., Dixon R. A., Keller P., Caron M. G., Lefkowitz R. J. Delineation of the intronless nature of the genes for the human and hamster beta 2-adrenergic receptor and their putative promoter regions. J Biol Chem. 1987 May 25;262(15):7321–7327. [PubMed] [Google Scholar]
- Konstam M. A., Cohen S. R., Salem D. N., Conlon T. P., Isner J. M., Das D., Zile M. R., Levine H. J., Kahn P. C. Comparison of left and right ventricular end-systolic pressure-volume relations in congestive heart failure. J Am Coll Cardiol. 1985 Jun;5(6):1326–1334. doi: 10.1016/s0735-1097(85)80344-2. [DOI] [PubMed] [Google Scholar]
- Kurabayashi M., Tsuchimochi H., Komuro I., Takaku F., Yazaki Y. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest. 1988 Aug;82(2):524–531. doi: 10.1172/JCI113627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladenson P. W., Sherman S. I., Baughman K. L., Ray P. E., Feldman A. M. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5251–5255. doi: 10.1073/pnas.89.12.5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
- Lompré A. M., Nadal-Ginard B., Mahdavi V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem. 1984 May 25;259(10):6437–6446. [PubMed] [Google Scholar]
- Loud A. V., Anversa P. Morphometric analysis of biologic processes. Lab Invest. 1984 Mar;50(3):250–261. [PubMed] [Google Scholar]
- Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
- Mahdavi V., Periasamy M., Nadal-Ginard B. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature. 1982 Jun 24;297(5868):659–664. doi: 10.1038/297659a0. [DOI] [PubMed] [Google Scholar]
- Margossian S. S., White H. D., Caulfield J. B., Norton P., Taylor S., Slayter H. S. Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Identification of a causal agent for impaired myocardial function. Circulation. 1992 May;85(5):1720–1733. doi: 10.1161/01.cir.85.5.1720. [DOI] [PubMed] [Google Scholar]
- Mercadier J. J., Bouveret P., Gorza L., Schiaffino S., Clark W. A., Zak R., Swynghedauw B., Schwartz K. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res. 1983 Jul;53(1):52–62. doi: 10.1161/01.res.53.1.52. [DOI] [PubMed] [Google Scholar]
- Mercadier J. J., Lompré A. M., Duc P., Boheler K. R., Fraysse J. B., Wisnewsky C., Allen P. D., Komajda M., Schwartz K. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990 Jan;85(1):305–309. doi: 10.1172/JCI114429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation. 1993 May;87(5):1451–1460. doi: 10.1161/01.cir.87.5.1451. [DOI] [PubMed] [Google Scholar]
- Nadal-Ginard B., Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest. 1989 Dec;84(6):1693–1700. doi: 10.1172/JCI114351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakao K., Minobe W., Roden R., Bristow M. R., Leinwand L. A. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997 Nov 1;100(9):2362–2370. doi: 10.1172/JCI119776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagani E. D., Alousi A. A., Grant A. M., Older T. M., Dziuban S. W., Jr, Allen P. D. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res. 1988 Aug;63(2):380–385. doi: 10.1161/01.res.63.2.380. [DOI] [PubMed] [Google Scholar]
- Pende A., Tremmel K. D., DeMaria C. T., Blaxall B. C., Minobe W. A., Sherman J. A., Bisognano J. D., Bristow M. R., Brewer G., Port J. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway. J Biol Chem. 1996 Apr 5;271(14):8493–8501. doi: 10.1074/jbc.271.14.8493. [DOI] [PubMed] [Google Scholar]
- Saez L. J., Gianola K. M., McNally E. M., Feghali R., Eddy R., Shows T. B., Leinwand L. A. Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Res. 1987 Jul 10;15(13):5443–5459. doi: 10.1093/nar/15.13.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito Y., Nakao K., Arai H., Nishimura K., Okumura K., Obata K., Takemura G., Fujiwara H., Sugawara A., Yamada T. Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest. 1989 Jan;83(1):298–305. doi: 10.1172/JCI113872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheuer J., Malhotra A., Hirsch C., Capasso J., Schaible T. F. Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy in rats. J Clin Invest. 1982 Dec;70(6):1300–1305. doi: 10.1172/JCI110729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schier J. J., Adelstein R. S. Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest. 1982 Apr;69(4):816–825. doi: 10.1172/JCI110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz K., Boheler K. R., de la Bastie D., Lompre A. M., Mercadier J. J. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol. 1992 Mar;262(3 Pt 2):R364–R369. doi: 10.1152/ajpregu.1992.262.3.R364. [DOI] [PubMed] [Google Scholar]
- Sindhwani R., Ismail-Beigi F., Leinwand L. A. Post-transcriptional regulation of rat alpha cardiac myosin heavy chain gene expression. J Biol Chem. 1994 Feb 4;269(5):3272–3276. [PubMed] [Google Scholar]
- Solaro R. J. Myosin and why hearts fail. Circulation. 1992 May;85(5):1945–1947. doi: 10.1161/01.cir.85.5.1945. [DOI] [PubMed] [Google Scholar]
- Studer R., Reinecke H., Bilger J., Eschenhagen T., Böhm M., Hasenfuss G., Just H., Holtz J., Drexler H. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res. 1994 Sep;75(3):443–453. doi: 10.1161/01.res.75.3.443. [DOI] [PubMed] [Google Scholar]
- Studer R., Reinecke H., Bilger J., Eschenhagen T., Böhm M., Hasenfuss G., Just H., Holtz J., Drexler H. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res. 1994 Sep;75(3):443–453. doi: 10.1161/01.res.75.3.443. [DOI] [PubMed] [Google Scholar]
- Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
- Takeda N., Rupp H., Fenchel G., Hoffmeister H. E., Jacob R. Relationship between the myofibrillar ATPase activity of human biopsy material and hemodynamic parameters. Jpn Heart J. 1985 Nov;26(6):909–922. doi: 10.1536/ihj.26.909. [DOI] [PubMed] [Google Scholar]
- Thorburn A., Thorburn J., Chen S. Y., Powers S., Shubeita H. E., Feramisco J. R., Chien K. R. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem. 1993 Jan 25;268(3):2244–2249. [PubMed] [Google Scholar]
- Ungerer M., Böhm M., Elce J. S., Erdmann E., Lohse M. J. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. 1993 Feb;87(2):454–463. doi: 10.1161/01.cir.87.2.454. [DOI] [PubMed] [Google Scholar]
- Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss A., Leinwand L. A. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol. 1996;12:417–439. doi: 10.1146/annurev.cellbio.12.1.417. [DOI] [PubMed] [Google Scholar]
- White M., Wiechmann R. J., Roden R. L., Hagan M. B., Wollmering M. M., Port J. D., Hammond E., Abraham W. T., Wolfel E. E., Lindenfeld J. Cardiac beta-adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury. Evidence for catecholamine-mediated myocardial damage. Circulation. 1995 Oct 15;92(8):2183–2189. doi: 10.1161/01.cir.92.8.2183. [DOI] [PubMed] [Google Scholar]
- Wiesner R. J., Ehmke H., Faulhaber J., Zak R., Rüegg J. C. Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Circulation. 1997 Mar 4;95(5):1253–1259. doi: 10.1161/01.cir.95.5.1253. [DOI] [PubMed] [Google Scholar]