Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2010 Oct;7(4):424–438. doi: 10.1016/j.nurt.2010.08.002

Astrocytes and epilepsy

Nihal C de Lanerolle 1,, Tih-Shih Lee 2, Dennis D Spencer 1
PMCID: PMC5084304  PMID: 20880506

Summary

Astrocytes form a significant constituent of seizure foci in the human brain. For a long time it was believed that astrocytes play a significant role in the causation of seizures. With the increase in our understanding of the unique biology of these cells, their precise role in seizure foci is receiving renewed attention. This article reviews the information now available on the role of astrocytes in the hippocampal seizure focus in patients with temporal lobe epilepsy with hippocampal sclerosis. Our intent is to try to integrate the available data. Astrocytes at seizure foci seem to not be a homogeneous population of cells, and in addition to typical glial fibrillary acidic protein, positive reactive astrocytes also include a population of neuron glia-2-like cells The astrocytes in sclerotic hippocampi differ from those in nonsclerotic hippocampi in their membrane physiology, having elevated Na+ channels and reduced inwardly rectifying potassium ion channels, and some having the capacity to generate action potentials. They also have reduced glutamine synthetase and increased glutamate dehydrogenase activity. The molecular interface between the astrocyte and microvasculature is also changed. The astrocytes are also associated with increased expression of many molecules normally concerned with immune and inflammatory functions. A speculative mechanism postulates that neuron glia-2-like cells may be involved in creating a high glutamate environment, whereas the function of more typical reactive astrocytes contribute to maintain high extracellular K+ levels; both factors contributing to the hyperexcitability of subicular neurons to generate epileptiform activity. The functions of the astrocyte vascular interface may be more critical to the processes involved in epileptogenesis.

Key Words: Astrocytes, temporal lobe epilepsy, hippocampal sclerosis, NG2 cells, seizures

References

  • 1.Steinhäuser C, Haydon PG, de Lanerolle NC. Astroglial mechanisms in epilepsy. In: Engel JJ, Pedley TA, editors. Epilepsy: a comprehensive textbook. Philadelphia: Lipincott, Williams & Wilkins; 2008. pp. 277–288. [Google Scholar]
  • 2.Penfield W, Humphreys S. Epileptogenic lesions of the brain. A histologic study. Arch Neurol Psychiatry. 1940;43:240–259. [Google Scholar]
  • 3.Foerster O, Penfield W. The structural basis of traumatic epilepsy and results of radical operations. Brain. 1930;53:99–119. doi: 10.1093/brain/53.2.99. [DOI] [Google Scholar]
  • 4.Ward AA. Glia and epilepsy. In: Schoffeniels E, Frank G, Towers DB, Hertz L, editors. Dynamic PROPERTIES OF GLIA CELLS. New York: Pergamon; 1977. pp. 413–427. [Google Scholar]
  • 5.Pollen DA, Trachtenberg MC. Neuroglia: gliosis and focal epilepsy. Science. 1970;167:1252–1253. doi: 10.1126/science.167.3922.1252. [DOI] [PubMed] [Google Scholar]
  • 6.Harris AB. Cortical neuroglia in experimental epilepsy. Exper Neurol. 1975;49:691–715. doi: 10.1016/0014-4886(75)90052-7. [DOI] [PubMed] [Google Scholar]
  • 7.Tiffany-Castiglioni E, Castiglioni AJJ. Astrocytes in epilepsy. In: Fedoroff S, Vernadarkis A, editors. Astrocytes: cell biology and pathology of astrocytes. New York: Academic Press; 1986. pp. 401–424. [Google Scholar]
  • 8.de Lanerolle NC, Lee TS. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav. 2005;7:190–203. doi: 10.1016/j.yebeh.2005.06.003. [DOI] [PubMed] [Google Scholar]
  • 9.de Lanerolle NC, Kim JH, Williamson A, et al. A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia. 2003;44:677–687. doi: 10.1046/j.1528-1157.2003.32701.x. [DOI] [PubMed] [Google Scholar]
  • 10.Petroff OA, Errante LD, Kim JH, Spencer DD. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology. 2003;60:1646–1651. doi: 10.1001/archneur.60.11.1646. [DOI] [PubMed] [Google Scholar]
  • 11.Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington HH. Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. J Neurosurg. 2004;101:613–620. doi: 10.3171/jns.2004.101.4.0613. [DOI] [PubMed] [Google Scholar]
  • 12.Verkhratsky A. Neurotransmitter receptors in astrocytes. In: Parpura V, Haydon PG, eds. Astrocytes in (patho)physiology of the nervous system: Springer Science, 2009.
  • 13.Scifert G, Schroder W, Hinterkeuser S, Schumacher T, Schramm J, Steinhauser C. Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia. 2002;43(Suppl. 5):162–167. doi: 10.1046/j.1528-1157.43.s.5.10.x. [DOI] [PubMed] [Google Scholar]
  • 14.Scifert G, Hüttmann K, Schramm J, Steinhäuser C. Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon’s hom sclerosis. J Neurosci. 2004;24:1996–2003. doi: 10.1523/JNEUROSCI.3904-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Steinhäuser C, Scifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol. 2002;447:227–237. doi: 10.1016/S0014-2999(02)01846-0. [DOI] [PubMed] [Google Scholar]
  • 16.Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 2005;6:626–640. doi: 10.1038/nrn1722. [DOI] [PubMed] [Google Scholar]
  • 17.Fiacco TA, Agulhon C, Taves SR, et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron. 2007;54:611–626. doi: 10.1016/j.neuron.2007.04.032. [DOI] [PubMed] [Google Scholar]
  • 18.During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet. 1993;341:1607–1610. doi: 10.1016/0140-6736(93)90754-5. [DOI] [PubMed] [Google Scholar]
  • 19.Cavus I, Abi-Saab WM, Cassadey M, et al. Basal glutamate, gamma-aminobutyric acid, glucose, and lactate levels in the epileptogenic and non-epileptogenic brain site in neurosuergery patients. Epilepsia. 2002;43:247–247. [Google Scholar]
  • 20.Roper EA, Hioogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain. 2002;125:32–43. doi: 10.1093/brain/awf001. [DOI] [PubMed] [Google Scholar]
  • 21.Mathem GW, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52:453–472. doi: 10.1212/wnl.52.3.453. [DOI] [PubMed] [Google Scholar]
  • 22.Tessler S, Danbolt NC, Faull RLM, Storm-Mathisen J, Emson P. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience. 1998;88:1083–1091. doi: 10.1016/S0306-4522(98)00301-7. [DOI] [PubMed] [Google Scholar]
  • 23.Bjørnsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC. Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis. 2006;25:319–330. doi: 10.1016/j.nbd.2006.09.014. [DOI] [PubMed] [Google Scholar]
  • 24.Lee T-S, Bjornsen LP, Paz C, et al. GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol. 2006;111:351–363. doi: 10.1007/s00401-005-0017-9. [DOI] [PubMed] [Google Scholar]
  • 25.Eid T, Lee T-SW, Thomas MJ, et al. Loss of perivascular aquaporin 4 inderlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci U S A. 2005;102:1193–1198. doi: 10.1073/pnas.0409308102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tse FW, Fraser DD, Duffy S, MacVicar BA. Voltage-activated K+ currents in acutely isolated hippocampal astrocytes. J Neurosci. 1992;12:1781–1788. doi: 10.1523/JNEUROSCI.12-05-01781.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sontheimer H, Waxman SG. Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. J Neurophysiol. 1993;70:1863–1873. doi: 10.1152/jn.1993.70.5.1863. [DOI] [PubMed] [Google Scholar]
  • 28.Sontheimer H, Ransom B, Cornell-Bell A, Black J, Waxman S. Sodium current expression in rat hippocampal astrocytes in vitro: Alterations during development. J Neurophysiol. 1991;65:3–19. doi: 10.1152/jn.1991.65.1.3. [DOI] [PubMed] [Google Scholar]
  • 29.Bevan B, Chiu S, Gray P, Ritchie J. The presence of voltage gated sodium, potassium, and chloride channels in rat cultured astrocytes. Proc R Soc Lond. 1985;225:299–313. doi: 10.1098/rspb.1985.0063. [DOI] [PubMed] [Google Scholar]
  • 30.Barres BA, Chun LLy, Corey DP. Ion channels in vertebrate glia. Ann Rev Neurosci. 1990;13:441–474. doi: 10.1146/annurev.ne.13.030190.002301. [DOI] [PubMed] [Google Scholar]
  • 31.Barres BA, Chun LLY, Corey DP. Ion channel expression by white matter glia: I. type 2 astrocytes and oligodendrocytes. Glia. 1988;1:10–30. doi: 10.1002/glia.440010104. [DOI] [PubMed] [Google Scholar]
  • 32.O’Connor ER, Sontheimer H, Spencer DD, de Lanerolle NC. Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia. 1998;39:347–354. doi: 10.1111/j.1528-1157.1998.tb01386.x. [DOI] [PubMed] [Google Scholar]
  • 33.Bordey A, Spencer DD. Distinct electrophysiological alterations in dentate gyrus versus CA1 glial cells from epileptic humans with temporal lobe sclerosis. Epilepsy Res. 2004;59:107–122. doi: 10.1016/j.eplepsyres.2004.04.004. [DOI] [PubMed] [Google Scholar]
  • 34.Bordey A, Sontheimer H. Properties of human glial cells associated with epileptic tissue. Epilepsy Res. 1998;32:286–303. doi: 10.1016/S0920-1211(98)00059-X. [DOI] [PubMed] [Google Scholar]
  • 35.Hinterkeuser S, Schröder W, Hager G, et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci. 2000;12:2087–2096. doi: 10.1046/j.1460-9568.2000.00104.x. [DOI] [PubMed] [Google Scholar]
  • 36.Djamshidian A, Grassl R, Seltenhammer M, et al. Altered expression of voltage-dependent calcium channel al subunits in temporal lobe epilepsy with Ammon’s hom sclerosis. Neuroscience. 2002;111:57–69. doi: 10.1016/S0306-4522(01)00528-0. [DOI] [PubMed] [Google Scholar]
  • 37.Gabriel S, Eilers A, Kivi A, et al. Effects of barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine treated rats. Neurosci Lett. 1998;242:9–12. doi: 10.1016/S0304-3940(98)00012-3. [DOI] [PubMed] [Google Scholar]
  • 38.Schroder W, Hinterkeuser S, Scifert G, et al. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia. 2000;41:S181–184. doi: 10.1111/j.1528-1157.2000.tb01578.x. [DOI] [PubMed] [Google Scholar]
  • 39.Hertz L, Dringen R, Schousboe A, Robinson SR. Astrocytes: glutamate producers for neurons. J Neurosci Res. 1999;57:417–428. doi: 10.1002/(SICI)1097-4547(19990815)57:4<417::AID-JNR1>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  • 40.van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Grann PN. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology. 2005;64:326–333. doi: 10.1212/01.WNL.0000149636.44660.99. [DOI] [PubMed] [Google Scholar]
  • 41.Eid T, Thomas MJ, Spencer DD, et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: a possible mechanism for elevated exttracellular glutamate in mesial temporal lobe epilepsy. Lancet. 2004;363:28–37. doi: 10.1016/S0140-6736(03)15166-5. [DOI] [PubMed] [Google Scholar]
  • 42.Eid T, Williamson A, Lee T-S, Petroff OA, de Lanerolle NC. Glutamate and astrocytes: key players in human mesial temporal lobe epilepsy. Epilepsia. 2008;49:42–52. doi: 10.1111/j.1528-1167.2008.01492.x. [DOI] [PubMed] [Google Scholar]
  • 43.Cavus I, Kasoff WS, Cassaday MP, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol. 2005;57:226–235. doi: 10.1002/ana.20380. [DOI] [PubMed] [Google Scholar]
  • 44.Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD. Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol. 2002;52:635–642. doi: 10.1002/ana.10360. [DOI] [PubMed] [Google Scholar]
  • 45.Malthankar-Phatak GH, de Lanerolle NC, Eid T, et al. Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy. Epilepsia. 2006;47:1292–1299. doi: 10.1111/j.1528-1167.2006.00543.x. [DOI] [PubMed] [Google Scholar]
  • 46.Petroff OAC. Metabolic biopsy of the brain. In: Waxman SG, editor. Molecular neurology. New York: Elsevier; 2007. pp. 77–100. [Google Scholar]
  • 47.During MJ, Itzhak F, Leone P, Katz A, Spencer DD. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J. Neurochem. 1994;62:2356–2361. doi: 10.1046/j.1471-4159.1994.62062356.x. [DOI] [PubMed] [Google Scholar]
  • 48.Cendes F, Stanley JA, Dubeau F, Andermann F, Arnold DL. Proton magnetic resonancenspectroscopic imaging for discrimination of absence and complex partial seizures. Ann Neurol. 1997;41:74–81. doi: 10.1002/ana.410410113. [DOI] [PubMed] [Google Scholar]
  • 49.Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–1089. doi: 10.1097/00004647-199611000-00001. [DOI] [PubMed] [Google Scholar]
  • 50.Lee T-S, Mane S, Eid T, et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med. 2007;13:1–13. doi: 10.2119/2006-00079.Lee. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Özbas-Gerceker F, Redeker S, Boer K, et al. Serial analysis of gene expression in the hippocampus of patients with mesial temporal lobe epilepsy. Neuroscience. 2006;138:457–474. doi: 10.1016/j.neuroscience.2005.11.043. [DOI] [PubMed] [Google Scholar]
  • 52.Becker AJ, Chen J, Paus S, et al. Transcriptional profiling in human epilepsy: expression array and single cell real-time qRT-PCR analysis reveal distinct cellular gene regulation. NeuroReport. 2002;13:1327–1333. doi: 10.1097/00001756-200207190-00023. [DOI] [PubMed] [Google Scholar]
  • 53.Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36:180–190. doi: 10.1002/glia.1107. [DOI] [PubMed] [Google Scholar]
  • 54.John GR, Lee SC, Song X, Rivieccio M, Brosnan CF. IL-1-Regulated responses in astrocytes: relevance to injury and recovery. Glia. 2005;49:161–176. doi: 10.1002/glia.20109. [DOI] [PubMed] [Google Scholar]
  • 55.Crespel A, Coubes P, Rousset M-C, et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 2002;952:159–169. doi: 10.1016/S0006-8993(02)03050-0. [DOI] [PubMed] [Google Scholar]
  • 56.Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–160. doi: 10.1016/j.nbd.2007.08.012. [DOI] [PubMed] [Google Scholar]
  • 57.Aronica E, Boer K, van Vilet EA, et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis. 2007;26:497–511. doi: 10.1016/j.nbd.2007.01.015. [DOI] [PubMed] [Google Scholar]
  • 58.Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permiability. J Anat. 2002;200:629–638. doi: 10.1046/j.1469-7580.2002.00064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Bratz E. Ammonshombefunde bei Epileptikern. Arch. Psychiatr Nervenkr. 1899;32:820–835. doi: 10.1007/BF02047162. [DOI] [Google Scholar]
  • 60.Eid T, Brines M, Cerami A, et al. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exptl Neurol. 2004;63:73–83. doi: 10.1093/jnen/63.1.73. [DOI] [PubMed] [Google Scholar]
  • 61.Rigau V, Morin M, Rousset M-C, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942–1956. doi: 10.1093/brain/awm118. [DOI] [PubMed] [Google Scholar]
  • 62.Van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130:521–534. doi: 10.1093/brain/awl318. [DOI] [PubMed] [Google Scholar]
  • 63.Cacheaux LP, Ivens S, David Y, et al. Transcriptome profiling reveals TGF-b signalling involvement in epileptogenesis. J Neurosci. 2009;29:8927–8935. doi: 10.1523/JNEUROSCI.0430-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ivens S, Kaufer D, Flores LP, et al. TGF-b receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–547. doi: 10.1093/brain/awl317. [DOI] [PubMed] [Google Scholar]
  • 65.Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6. doi: 10.1111/j.1528-1157.1995.tb01657.x. [DOI] [PubMed] [Google Scholar]
  • 66.Andjelkovic AV, Pachter JS. Characterization of binding sites for chemokines MCP-1 and MIP-1a on human brain microvessels. J Neurochem. 2000;75:1898–1906. doi: 10.1046/j.1471-4159.2000.0751898.x. [DOI] [PubMed] [Google Scholar]
  • 67.Andjelkovic AV, Kerkovich D, Shanley J, Pulliam L, Pachter JS. Expression of binding sites for b-chemokines on human astrocytes. Glia. 1999;28:225–235. doi: 10.1002/(SICI)1098-1136(199912)28:3<225::AID-GLIA6>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 68.Lee SH, Magge S, Spencer DD, Sontheimer H, Cornell-Bell A. Human epileptic astrocytes exhibit increased gap junction coupling. Glia. 1995;15:195–202. doi: 10.1002/glia.440150212. [DOI] [PubMed] [Google Scholar]
  • 69.Petroff OAC, Spencer DD. MRS studies of the role of altered glutamate and GABA neurotransmitter metabolism in the pathophysiology of epilepsy. In: Shulman RG, Rothman DL, editors. Brain energetics and neuronal activity: Applications to fMRI and medicine. New York: Wiley; 2004. [Google Scholar]
  • 70.Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD. Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia. 2002;43:703–710. doi: 10.1046/j.1528-1157.2002.38901.x. [DOI] [PubMed] [Google Scholar]
  • 71.Cavus I, Pan JW, Hetherington HP, et al. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia. 2008;49:2358–1366. doi: 10.1111/j.1528-1167.2008.01603.x. [DOI] [PubMed] [Google Scholar]
  • 72.Pan JW, Venkatraman T, Vives KP, Spencer DD. Quantitative glutamate spectroscopic imaging of the human hippocampus. NMR Biomed. 2006;19:209–216. doi: 10.1002/nbm.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Privat A, Gimenez-Ribotta M, Ridet J-L. Morphology of astrocytes. In: Kettenmann H, Ransom BR, editors. Neuroglia. New York: Oxford University Press; 1995. pp. 3–22. [Google Scholar]
  • 74.Matthias K, Kirchhoff F, Scifert G, et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci. 2003;23:1750–1758. doi: 10.1523/JNEUROSCI.23-05-01750.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Wallraff A, Odermatt B, Willecke K, Steinhäuser C. Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia. 2004;48:36–43. doi: 10.1002/glia.20040. [DOI] [PubMed] [Google Scholar]
  • 76.Jabs R, Scifert G, Steinhäuser C. Astrocytic function and its alteration in the epileptic brain. Epilepsia. 2008;49:3–12. doi: 10.1111/j.1528-1167.2008.01488.x. [DOI] [PubMed] [Google Scholar]
  • 77.Paukert M, Bergles DE. Synaptic communication between neurons and NG2 cells. Curr Opinion in Neurobiol. 2006;16:515–521. doi: 10.1016/j.conb.2006.08.009. [DOI] [PubMed] [Google Scholar]
  • 78.Schools GP, Zhou M, Kimmelberg HK. Electrophysiolohically “complex” glial cells fresshly isolated from the hippocampus are immunopositive for chondroitin sulphate proteoglycan NG2. J Neurosci Res. 2003;73:765–777. doi: 10.1002/jnr.10680. [DOI] [PubMed] [Google Scholar]
  • 79.Káradóttir R, Hamilton NB, Bakiri Y, Attwell D. Spiking and non-spiking classes of oligodendrocyte precursor glia in CNs white matter. Nature Neurosci. 2008;11:450–456. doi: 10.1038/nn2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Akiopian G, Kressin K, Derouiche A, Steinhäuser C. Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents. Glia. 1996;17:181–194. doi: 10.1002/(SICI)1098-1136(199607)17:3<181::AID-GLIA1>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • 81.Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol. 1989;33:161–253. doi: 10.1016/0301-0082(89)90009-9. [DOI] [PubMed] [Google Scholar]
  • 82.Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH. Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia. 1984;25:729–740. doi: 10.1111/j.1528-1157.1984.tb03484.x. [DOI] [PubMed] [Google Scholar]
  • 83.Sommer W. Erkrankung des Ammonshoms als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr. 1880;10:631–675. doi: 10.1007/BF02224538. [DOI] [Google Scholar]
  • 84.Fisher PD, Sperber EF, Moshe SL. Hippocampal sclerosis revisited. Brain Dev. 1998;20:563–563. doi: 10.1016/S0387-7604(98)00069-2. [DOI] [PubMed] [Google Scholar]
  • 85.Kim JH, Guimaraes PO, Shen M-Y, Masukawa LM, Spencer DD. Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas. Acta Neuropathol. 1990;80:41–45. doi: 10.1007/BF00294220. [DOI] [PubMed] [Google Scholar]
  • 86.Du F, Eid T, Lothman EW, Köhler C, Schwarcz R. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci. 1995;15:6301–6313. doi: 10.1523/JNEUROSCI.15-10-06301.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH. Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia. 1984;25:721–728. doi: 10.1111/j.1528-1157.1984.tb03483.x. [DOI] [PubMed] [Google Scholar]
  • 88.Williamson A, Spencer SS, Spencer DD. Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy. Ann Neurol. 1995;38:778–787. doi: 10.1002/ana.410380513. [DOI] [PubMed] [Google Scholar]
  • 89.Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem International. 2008;52:142–154. doi: 10.1016/j.neuint.2007.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Kimelberg HK, Mongin AA. Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology. Contrib Neprhol. 1998;123:240–257. doi: 10.1159/000059916. [DOI] [PubMed] [Google Scholar]
  • 91.Bragin A, Wilson CL, Almajano J, Mody I, Engel J. High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis. Epilepsia. 2004;45:1017–1023. doi: 10.1111/j.0013-9580.2004.17004.x. [DOI] [PubMed] [Google Scholar]
  • 92.De Guzman P, D’Antuono M, Avoli M. Initiation of electrtoencephalographic seizures by neural networks in entorhinal and perirhinal cortices in vitro. Neurosci. 2004;123:875–886. doi: 10.1016/j.neuroscience.2003.11.013. [DOI] [PubMed] [Google Scholar]
  • 93.Bar-Peled O, Ben-Hur H, Biegon A, et al. Distribution of glutamate transporter subtypes during human brain development. J Neurochem. 1997;69:2571–2580. doi: 10.1046/j.1471-4159.1997.69062571.x. [DOI] [PubMed] [Google Scholar]
  • 94.Bartolomei F, Khalil M, Wendling F, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia. 2005;46:677–687. doi: 10.1111/j.1528-1167.2005.43804.x. [DOI] [PubMed] [Google Scholar]
  • 95.Dawodu S, Thom M. Quantitative neuropathology of the entorhinal cortex region in patients with hippocampal sclerosis and temporal lobe epilepsy. Epilepsia. 2005;46:23–30. doi: 10.1111/j.0013-9580.2005.21804.x. [DOI] [PubMed] [Google Scholar]
  • 96.Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow. Science. 1987;237:896–898. doi: 10.1126/science.3616619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Eid T, Hammer J, Runden-Pran E, et al. Increased expression of phosphate activated glutaminase in hippocampal neurons in human mesialtemporal lobe epilepsy. Acta Neuropathol. 2007;113:137–152. doi: 10.1007/s00401-006-0158-5. [DOI] [PubMed] [Google Scholar]
  • 98.Jabs R, Pivneva T, Hüttmann K, et al. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci. 2005;118:3791–3803. doi: 10.1242/jcs.02515. [DOI] [PubMed] [Google Scholar]
  • 99.Friedman A, Kaufer D, Heinemann U. Blood-brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy. Epilepsy Res. 2009;85:142–149. doi: 10.1016/j.eplepsyres.2009.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:232–240. doi: 10.1038/sj.bjp.0706400. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES