Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2362–2370. doi: 10.1172/JCI119776

Myosin heavy chain gene expression in human heart failure.

K Nakao 1, W Minobe 1, R Roden 1, M R Bristow 1, L A Leinwand 1
PMCID: PMC508434  PMID: 9410916

Abstract

Two isoforms of myosin heavy chain (MyHC), alpha and beta, exist in the mammalian ventricular myocardium, and their relative expression is correlated with the contractile velocity of cardiac muscle. Several pathologic stimuli can cause a shift in the MyHC composition of the rodent ventricle from alpha- to beta-MyHC. Given the potential physiological consequences of cardiac MyHC isoform shifts, we determined MyHC gene expression in human heart failure where cardiac contractility is impaired significantly. In this study, we quantitated the relative amounts of alpha- and beta-MyHC mRNA in the left ventricular free walls (LVs) of 14 heart donor candidates with no history of cardiovascular disease or structural cardiovascular abnormalities. This group consisted of seven patients with nonfailing (NF) hearts and seven patients with hearts that exhibited donor heart dysfunction (DHD). These were compared with 19 patients undergoing cardiac transplantation for chronic end-stage heart failure (F). The relative amounts of alpha-MyHC mRNA to total (i.e., alpha + beta) MyHC mRNA in the NF- and DHD-LVs were surprisingly high compared with previous reports (33.3+/-18.9 and 35.4+/-16.5%, respectively), and were significantly higher than those in the F-LVs, regardless of the cause of heart failure (2.2+/-3.5%, P < 0.0001). There was no significant difference in the ratios in NF- and DHD-LVs. Our results demonstrate that a considerable amount of alpha-MyHC mRNA is expressed in the normal heart, and is decreased significantly in chronic end-stage heart failure. If protein and enzymatic activity correlate with mRNA expression, this molecular alteration may be sufficient to explain systolic dysfunction in F-LVs, and therapeutics oriented towards increasing alpha-MyHC gene expression may be feasible.

Full Text

The Full Text of this article is available as a PDF (312.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert N. R., Mulieri L. A. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res. 1982 Apr;50(4):491–500. doi: 10.1161/01.res.50.4.491. [DOI] [PubMed] [Google Scholar]
  2. Asano K., Dutcher D. L., Port J. D., Minobe W. A., Tremmel K. D., Roden R. L., Bohlmeyer T. J., Bush E. W., Jenkin M. J., Abraham W. T. Selective downregulation of the angiotensin II AT1-receptor subtype in failing human ventricular myocardium. Circulation. 1997 Mar 4;95(5):1193–1200. doi: 10.1161/01.cir.95.5.1193. [DOI] [PubMed] [Google Scholar]
  3. Boheler K. R., Carrier L., de la Bastie D., Allen P. D., Komajda M., Mercadier J. J., Schwartz K. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest. 1991 Jul;88(1):323–330. doi: 10.1172/JCI115295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouvagnet P., Mairhofer H., Leger J. O., Puech P., Leger J. J. Distribution pattern of alpha and beta myosin in normal and diseased human ventricular myocardium. Basic Res Cardiol. 1989 Jan-Feb;84(1):91–102. doi: 10.1007/BF01907006. [DOI] [PubMed] [Google Scholar]
  5. Brillantes A. M., Allen P., Takahashi T., Izumo S., Marks A. R. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res. 1992 Jul;71(1):18–26. doi: 10.1161/01.res.71.1.18. [DOI] [PubMed] [Google Scholar]
  6. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  7. Bristow M. R., Minobe W. A., Raynolds M. V., Port J. D., Rasmussen R., Ray P. E., Feldman A. M. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest. 1993 Dec;92(6):2737–2745. doi: 10.1172/JCI116891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Dechesne C., Leger J., Bouvagnet P., Claviez M., Leger J. J. Fractionation and characterization of two molecular variants of myosin from adult human atrium. J Mol Cell Cardiol. 1985 Aug;17(8):753–767. doi: 10.1016/s0022-2828(85)80037-7. [DOI] [PubMed] [Google Scholar]
  10. Epp T. A., Dixon I. M., Wang H. Y., Sole M. J., Liew C. C. Structural organization of the human cardiac alpha-myosin heavy chain gene (MYH6). Genomics. 1993 Dec;18(3):505–509. doi: 10.1016/s0888-7543(11)80006-6. [DOI] [PubMed] [Google Scholar]
  11. Feldman A. M., Ray P. E., Silan C. M., Mercer J. A., Minobe W., Bristow M. R. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991 Jun;83(6):1866–1872. doi: 10.1161/01.cir.83.6.1866. [DOI] [PubMed] [Google Scholar]
  12. Gorza L., Mercadier J. J., Schwartz K., Thornell L. E., Sartore S., Schiaffino S. Myosin types in the human heart. An immunofluorescence study of normal and hypertrophied atrial and ventricular myocardium. Circ Res. 1984 Jun;54(6):694–702. doi: 10.1161/01.res.54.6.694. [DOI] [PubMed] [Google Scholar]
  13. Gupta M. P., Gupta M., Stewart A., Zak R. Activation of alpha-myosin heavy chain gene expression by cAMP in cultured fetal rat heart myocytes. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1196–1203. doi: 10.1016/0006-291x(91)91548-q. [DOI] [PubMed] [Google Scholar]
  14. Hasenfuss G., Reinecke H., Studer R., Meyer M., Pieske B., Holtz J., Holubarsch C., Posival H., Just H., Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994 Sep;75(3):434–442. doi: 10.1161/01.res.75.3.434. [DOI] [PubMed] [Google Scholar]
  15. Hirzel H. O., Tuchschmid C. R., Schneider J., Krayenbuehl H. P., Schaub M. C. Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res. 1985 Nov;57(5):729–740. doi: 10.1161/01.res.57.5.729. [DOI] [PubMed] [Google Scholar]
  16. Holubarsch C., Goulette R. P., Litten R. Z., Martin B. J., Mulieri L. A., Alpert N. R. The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res. 1985 Jan;56(1):78–86. doi: 10.1161/01.res.56.1.78. [DOI] [PubMed] [Google Scholar]
  17. Izumo S., Lompré A. M., Matsuoka R., Koren G., Schwartz K., Nadal-Ginard B., Mahdavi V. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987 Mar;79(3):970–977. doi: 10.1172/JCI112908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jaenicke T., Diederich K. W., Haas W., Schleich J., Lichter P., Pfordt M., Bach A., Vosberg H. P. The complete sequence of the human beta-myosin heavy chain gene and a comparative analysis of its product. Genomics. 1990 Oct;8(2):194–206. doi: 10.1016/0888-7543(90)90272-v. [DOI] [PubMed] [Google Scholar]
  19. Kurabayashi M., Tsuchimochi H., Komuro I., Takaku F., Yazaki Y. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J Clin Invest. 1988 Aug;82(2):524–531. doi: 10.1172/JCI113627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ladenson P. W., Sherman S. I., Baughman K. L., Ray P. E., Feldman A. M. Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5251–5255. doi: 10.1073/pnas.89.12.5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leger J. O., Bouvagnet P., Pau B., Roncucci R., Leger J. J. Levels of ventricular myosin fragments in human sera after myocardial infarction, determined with monoclonal antibodies to myosin heavy chains. Eur J Clin Invest. 1985 Dec;15(6):422–429. doi: 10.1111/j.1365-2362.1985.tb00296.x. [DOI] [PubMed] [Google Scholar]
  22. Liew C. C., Sole M. J., Yamauchi-Takihara K., Kellam B., Anderson D. H., Lin L. P., Liew J. C. Complete sequence and organization of the human cardiac beta-myosin heavy chain gene. Nucleic Acids Res. 1990 Jun 25;18(12):3647–3651. doi: 10.1093/nar/18.12.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
  24. Matsuoka R., Beisel K. W., Furutani M., Arai S., Takao A. Complete sequence of human cardiac alpha-myosin heavy chain gene and amino acid comparison to other myosins based on structural and functional differences. Am J Med Genet. 1991 Dec 15;41(4):537–547. doi: 10.1002/ajmg.1320410435. [DOI] [PubMed] [Google Scholar]
  25. McKay R. G., Pfeffer M. A., Pasternak R. C., Markis J. E., Come P. C., Nakao S., Alderman J. D., Ferguson J. J., Safian R. D., Grossman W. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation. 1986 Oct;74(4):693–702. doi: 10.1161/01.cir.74.4.693. [DOI] [PubMed] [Google Scholar]
  26. Mercadier J. J., Bouveret P., Gorza L., Schiaffino S., Clark W. A., Zak R., Swynghedauw B., Schwartz K. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res. 1983 Jul;53(1):52–62. doi: 10.1161/01.res.53.1.52. [DOI] [PubMed] [Google Scholar]
  27. Mercadier J. J., Lompré A. M., Duc P., Boheler K. R., Fraysse J. B., Wisnewsky C., Allen P. D., Komajda M., Schwartz K. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990 Jan;85(1):305–309. doi: 10.1172/JCI114429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mercadier J. J., Lompré A. M., Wisnewsky C., Samuel J. L., Bercovici J., Swynghedauw B., Schwartz K. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res. 1981 Aug;49(2):525–532. doi: 10.1161/01.res.49.2.525. [DOI] [PubMed] [Google Scholar]
  29. Nadal-Ginard B., Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest. 1989 Dec;84(6):1693–1700. doi: 10.1172/JCI114351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nagai R., Pritzl N., Low R. B., Stirewalt W. S., Zak R., Alpert N. R., Litten R. Z. Myosin isozyme synthesis and mRNA levels in pressure-overloaded rabbit hearts. Circ Res. 1987 May;60(5):692–699. doi: 10.1161/01.res.60.5.692. [DOI] [PubMed] [Google Scholar]
  31. Schiaffino S., Gorza L., Saggin L., Valfré C., Sartore S. Myosin changes in hypertrophied human atrial and ventricular myocardium. A correlated immunofluorescence and quantitative immunochemical study on serial cryosections. Eur Heart J. 1984 Dec;5 (Suppl F):95–102. doi: 10.1093/eurheartj/5.suppl_f.95. [DOI] [PubMed] [Google Scholar]
  32. Schier J. J., Adelstein R. S. Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest. 1982 Apr;69(4):816–825. doi: 10.1172/JCI110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sheer D., Morkin E. Myosin isoenzyme expression in rat ventricle: effects of thyroid hormone analogs, catecholamines, glucocorticoids and high carbohydrate diet. J Pharmacol Exp Ther. 1984 Jun;229(3):872–879. [PubMed] [Google Scholar]
  34. Sindhwani R., Ismail-Beigi F., Leinwand L. A. Post-transcriptional regulation of rat alpha cardiac myosin heavy chain gene expression. J Biol Chem. 1994 Feb 4;269(5):3272–3276. [PubMed] [Google Scholar]
  35. Studer R., Reinecke H., Bilger J., Eschenhagen T., Böhm M., Hasenfuss G., Just H., Holtz J., Drexler H. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res. 1994 Sep;75(3):443–453. doi: 10.1161/01.res.75.3.443. [DOI] [PubMed] [Google Scholar]
  36. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
  37. Tsuchimochi H., Sugi M., Kuro-o M., Ueda S., Takaku F., Furuta S., Shirai T., Yazaki Y. Isozymic changes in myosin of human atrial myocardium induced by overload. Immunohistochemical study using monoclonal antibodies. J Clin Invest. 1984 Aug;74(2):662–665. doi: 10.1172/JCI111466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Waspe L. E., Ordahl C. P., Simpson P. C. The cardiac beta-myosin heavy chain isogene is induced selectively in alpha 1-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest. 1990 Apr;85(4):1206–1214. doi: 10.1172/JCI114554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. White M., Wiechmann R. J., Roden R. L., Hagan M. B., Wollmering M. M., Port J. D., Hammond E., Abraham W. T., Wolfel E. E., Lindenfeld J. Cardiac beta-adrenergic neuroeffector systems in acute myocardial dysfunction related to brain injury. Evidence for catecholamine-mediated myocardial damage. Circulation. 1995 Oct 15;92(8):2183–2189. doi: 10.1161/01.cir.92.8.2183. [DOI] [PubMed] [Google Scholar]
  41. Wiesner R. J., Ehmke H., Faulhaber J., Zak R., Rüegg J. C. Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Circulation. 1997 Mar 4;95(5):1253–1259. doi: 10.1161/01.cir.95.5.1253. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES