Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 1;100(9):2371–2375. doi: 10.1172/JCI119777

DNA immunization of neonates induces immunity despite the presence of maternal antibody.

E Manickan 1, Z Yu 1, B T Rouse 1
PMCID: PMC508435  PMID: 9410917

Abstract

Neonatal animals were not considered as suitable vaccine recipients either because of immune immaturity or because passively delivered antibody interferes with immune induction. In this report, we evaluated the response of neonatal mice to immunization with naked DNA encoding a herpes simplex virus (HSV) protein, and determined if maternally derived HSV antibody interfered with immunogenicity. Our results show that neonatal mice develop effective humoral and T cell responses after immunization with either DNA or inactivated vaccines. The nature of the responses to HSV immunization, however, was more Th2-like in neonates than in adults. Whereas neonatal mice from HSV-naive mothers responded well to both DNA and inactivated vaccines, only DNA immunization induced effective immunity in neonates born to immune mothers. Our results indicate that DNA vaccines might provide a useful means of immunizing young animals that still possess high levels of potentially interfering maternal antibody.

Full Text

The Full Text of this article is available as a PDF (146.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht P., Ennis F. A., Saltzman E. J., Krugman S. Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr. 1977 Nov;91(5):715–718. doi: 10.1016/s0022-3476(77)81021-4. [DOI] [PubMed] [Google Scholar]
  2. Barrios C., Brawand P., Berney M., Brandt C., Lambert P. H., Siegrist C. A. Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: predominance of a Th2-biased pattern which persists after adult boosting. Eur J Immunol. 1996 Jul;26(7):1489–1496. doi: 10.1002/eji.1830260713. [DOI] [PubMed] [Google Scholar]
  3. Bot A., Bot S., Garcia-Sastre A., Bona C. DNA immunization of newborn mice with a plasmid-expressing nucleoprotein of influenza virus. Viral Immunol. 1996;9(4):207–210. doi: 10.1089/vim.1996.9.207. [DOI] [PubMed] [Google Scholar]
  4. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  5. Condon C., Watkins S. C., Celluzzi C. M., Thompson K., Falo L. D., Jr DNA-based immunization by in vivo transfection of dendritic cells. Nat Med. 1996 Oct;2(10):1122–1128. doi: 10.1038/nm1096-1122. [DOI] [PubMed] [Google Scholar]
  6. Doe B., Selby M., Barnett S., Baenziger J., Walker C. M. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8578–8583. doi: 10.1073/pnas.93.16.8578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ertl H. C., Xiang Z. Novel vaccine approaches. J Immunol. 1996 May 15;156(10):3579–3582. [PubMed] [Google Scholar]
  8. Forsthuber T., Yip H. C., Lehmann P. V. Induction of TH1 and TH2 immunity in neonatal mice. Science. 1996 Mar 22;271(5256):1728–1730. doi: 10.1126/science.271.5256.1728. [DOI] [PubMed] [Google Scholar]
  9. Garza K. M., Griggs N. D., Tung K. S. Neonatal injection of an ovarian peptide induces autoimmune ovarian disease in female mice: requirement of endogenous neonatal ovaries. Immunity. 1997 Jan;6(1):89–96. doi: 10.1016/s1074-7613(00)80245-9. [DOI] [PubMed] [Google Scholar]
  10. Kuklin N., Daheshia M., Karem K., Manickan E., Rouse B. T. Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol. 1997 Apr;71(4):3138–3145. doi: 10.1128/jvi.71.4.3138-3145.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kumar V., Sercarz E. Genetic vaccination: the advantages of going naked. Nat Med. 1996 Aug;2(8):857–859. doi: 10.1038/nm0896-857. [DOI] [PubMed] [Google Scholar]
  12. Manickan E., Kanangat S., Rouse R. J., Yu Z., Rouse B. T. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol. 1997 Feb;61(2):125–132. doi: 10.1002/jlb.61.2.125. [DOI] [PubMed] [Google Scholar]
  13. Manickan E., Karem K. L., Rouse B. T. DNA vaccines -- a modern gimmick or a boon to vaccinology? Crit Rev Immunol. 1997;17(2):139–154. doi: 10.1615/critrevimmunol.v17.i2.20. [DOI] [PubMed] [Google Scholar]
  14. Manickan E., Rouse R. J., Yu Z., Wire W. S., Rouse B. T. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J Immunol. 1995 Jul 1;155(1):259–265. [PubMed] [Google Scholar]
  15. Mor G., Yamshchikov G., Sedegah M., Takeno M., Wang R., Houghten R. A., Hoffman S., Klinman D. M. Induction of neonatal tolerance by plasmid DNA vaccination of mice. J Clin Invest. 1996 Dec 15;98(12):2700–2705. doi: 10.1172/JCI119094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy B. R., Olmsted R. A., Collins P. L., Chanock R. M., Prince G. A. Passive transfer of respiratory syncytial virus (RSV) antiserum suppresses the immune response to the RSV fusion (F) and large (G) glycoproteins expressed by recombinant vaccinia viruses. J Virol. 1988 Oct;62(10):3907–3910. doi: 10.1128/jvi.62.10.3907-3910.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ridge J. P., Fuchs E. J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996 Mar 22;271(5256):1723–1726. doi: 10.1126/science.271.5256.1723. [DOI] [PubMed] [Google Scholar]
  18. Rouse R. J., Nair S. K., Lydy S. L., Bowen J. C., Rouse B. T. Induction in vitro of primary cytotoxic T-lymphocyte responses with DNA encoding herpes simplex virus proteins. J Virol. 1994 Sep;68(9):5685–5689. doi: 10.1128/jvi.68.9.5685-5689.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sarzotti M., Robbins D. S., Hoffman P. M. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science. 1996 Mar 22;271(5256):1726–1728. doi: 10.1126/science.271.5256.1726. [DOI] [PubMed] [Google Scholar]
  20. Ulmer J. B., Deck R. R., Dewitt C. M., Donnhly J. I., Liu M. A. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology. 1996 Sep;89(1):59–67. doi: 10.1046/j.1365-2567.1996.d01-718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ulmer J. B., Sadoff J. C., Liu M. A. DNA vaccines. Curr Opin Immunol. 1996 Aug;8(4):531–536. doi: 10.1016/s0952-7915(96)80042-2. [DOI] [PubMed] [Google Scholar]
  22. Whalen R. G. DNA vaccines for emerging infectious diseases: what if? Emerg Infect Dis. 1996 Jul-Sep;2(3):168–175. doi: 10.3201/eid0203.960302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winters W. D. Time dependent decreases of maternal canine virus antibodies in newborn pups. Vet Rec. 1981 Apr 4;108(14):295–299. doi: 10.1136/vr.108.14.295. [DOI] [PubMed] [Google Scholar]
  24. Xiang Z., Ertl H. C. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 1995 Feb;2(2):129–135. doi: 10.1016/s1074-7613(95)80001-8. [DOI] [PubMed] [Google Scholar]
  25. van Maanen C., Bruin G., de Boer-Luijtze E., Smolders G., de Boer G. F. Interference of maternal antibodies with the immune response of foals after vaccination against equine influenza. Vet Q. 1992 Jan;14(1):13–17. doi: 10.1080/01652176.1992.9694319. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES