Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 15;100(10):2486–2500. doi: 10.1172/JCI119791

Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis.

Y H Kim 1, A Garfinkel 1, T Ikeda 1, T J Wu 1, C A Athill 1, J N Weiss 1, H S Karagueuzian 1, P S Chen 1
PMCID: PMC508449  PMID: 9366563

Abstract

We have presented evidence that ventricular fibrillation is deterministic chaos arising from quasiperiodicity. The purpose of this study was to determine whether the transition from chaos (ventricular fibrillation, VF) to periodicity (ventricular tachycardia) through quasiperiodicity could be produced by the progressive reduction of tissue mass. In isolated and perfused swine right ventricular free wall, recording of single cell transmembrane potentials and simultaneous mapping (477 bipolar electrodes, 1.6 mm resolution) were performed. The tissue mass was then progressively reduced by sequential cutting. All isolated tissues fibrillated spontaneously. The critical mass to sustain VF was 19.9 +/- 4.2 g. As tissue mass was decreased, the number of wave fronts decreased, the life-span of reentrant wave fronts increased, and the cycle length, the diastolic interval, and the duration of action potential lengthened. There was a parallel decrease in the dynamical complexity of VF as measured by Kolmogorov entropy and Poincaré plots. A period of quasiperiodicity became more evident before the conversion from VF (chaos) to a more regular arrhythmia (periodicity). In conclusion, a decrease in the number of wave fronts in ventricular fibrillation by tissue mass reduction causes a transition from chaotic to periodic dynamics via the quasiperiodic route.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antzelevitch C., Sicouri S., Litovsky S. H., Lukas A., Krishnan S. C., Di Diego J. M., Gintant G. A., Liu D. W. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991 Dec;69(6):1427–1449. doi: 10.1161/01.res.69.6.1427. [DOI] [PubMed] [Google Scholar]
  2. Bonometti C., Hwang C., Hough D., Lee J. J., Fishbein M. C., Karagueuzian H. S., Chen P. S. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res. 1995 Aug;77(2):407–416. doi: 10.1161/01.res.77.2.407. [DOI] [PubMed] [Google Scholar]
  3. Brandstater A, Swinney HL. Strange attractors in weakly turbulent Couette-Taylor flow. Phys Rev A Gen Phys. 1987 Mar 1;35(5):2207–2220. doi: 10.1103/physreva.35.2207. [DOI] [PubMed] [Google Scholar]
  4. Cha Y. M., Birgersdotter-Green U., Wolf P. L., Peters B. B., Chen P. S. The mechanism of termination of reentrant activity in ventricular fibrillation. Circ Res. 1994 Mar;74(3):495–506. doi: 10.1161/01.res.74.3.495. [DOI] [PubMed] [Google Scholar]
  5. Chen P. S., Wolf P. D., Claydon F. J., Dixon E. G., Vidaillet H. J., Jr, Danieley N. D., Pilkington T. C., Ideker R. E. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation. 1986 Sep;74(3):626–636. doi: 10.1161/01.cir.74.3.626. [DOI] [PubMed] [Google Scholar]
  6. Chen P. S., Wolf P. D., Dixon E. G., Danieley N. D., Frazier D. W., Smith W. M., Ideker R. E. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988 Jun;62(6):1191–1209. doi: 10.1161/01.res.62.6.1191. [DOI] [PubMed] [Google Scholar]
  7. Damiano R. J., Jr, Asano T., Smith P. K., Ferguson T. B., Jr, Douglas J. M., Jr, Cox J. L. Electrophysiologic effects of surgical isolation of the right ventricle. Ann Thorac Surg. 1986 Jul;42(1):65–69. doi: 10.1016/s0003-4975(10)61838-3. [DOI] [PubMed] [Google Scholar]
  8. Garfinkel A., Chen P. S., Walter D. O., Karagueuzian H. S., Kogan B., Evans S. J., Karpoukhin M., Hwang C., Uchida T., Gotoh M. Quasiperiodicity and chaos in cardiac fibrillation. J Clin Invest. 1997 Jan 15;99(2):305–314. doi: 10.1172/JCI119159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray R. A., Jalife J., Panfilov A., Baxter W. T., Cabo C., Davidenko J. M., Pertsov A. M. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation. 1995 May 1;91(9):2454–2469. doi: 10.1161/01.cir.91.9.2454. [DOI] [PubMed] [Google Scholar]
  10. Ikeda T., Uchida T., Hough D., Lee J. J., Fishbein M. C., Mandel W. J., Chen P. S., Karagueuzian H. S. Mechanism of spontaneous termination of functional reentry in isolated canine right atrium. Evidence for the presence of an excitable but nonexcited core. Circulation. 1996 Oct 15;94(8):1962–1973. doi: 10.1161/01.cir.94.8.1962. [DOI] [PubMed] [Google Scholar]
  11. Janse M. J., Wilms-Schopman F. J., Coronel R. Ventricular fibrillation is not always due to multiple wavelet reentry. J Cardiovasc Electrophysiol. 1995 Jul;6(7):512–521. doi: 10.1111/j.1540-8167.1995.tb00424.x. [DOI] [PubMed] [Google Scholar]
  12. Kaplan D. T., Cohen R. J. Is fibrillation chaos? Circ Res. 1990 Oct;67(4):886–892. doi: 10.1161/01.res.67.4.886. [DOI] [PubMed] [Google Scholar]
  13. Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992 Mar 15;45(6):3403–3411. doi: 10.1103/physreva.45.3403. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi Y., Peters W., Khan S. S., Mandel W. J., Karagueuzian H. S. Cellular mechanisms of differential action potential duration restitution in canine ventricular muscle cells during single versus double premature stimuli. Circulation. 1992 Sep;86(3):955–967. doi: 10.1161/01.cir.86.3.955. [DOI] [PubMed] [Google Scholar]
  15. Lee J. J., Kamjoo K., Hough D., Hwang C., Fan W., Fishbein M. C., Bonometti C., Ikeda T., Karagueuzian H. S., Chen P. S. Reentrant wave fronts in Wiggers' stage II ventricular fibrillation. Characteristics and mechanisms of termination and spontaneous regeneration. Circ Res. 1996 Apr;78(4):660–675. doi: 10.1161/01.res.78.4.660. [DOI] [PubMed] [Google Scholar]
  16. Levine J. H., Moore E. N., Weisman H. F., Kadish A. H., Becker L. C., Spear J. F. Depression of action potential characteristics and a decreased space constant are present in postischemic, reperfused myocardium. J Clin Invest. 1987 Jan;79(1):107–116. doi: 10.1172/JCI112770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MOE G. K., RHEINBOLDT W. C., ABILDSKOV J. A. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964 Feb;67:200–220. doi: 10.1016/0002-8703(64)90371-0. [DOI] [PubMed] [Google Scholar]
  18. Nearing B. D., Huang A. H., Verrier R. L. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science. 1991 Apr 19;252(5004):437–440. doi: 10.1126/science.2017682. [DOI] [PubMed] [Google Scholar]
  19. Starmer C. F., Romashko D. N., Reddy R. S., Zilberter Y. I., Starobin J., Grant A. O., Krinsky V. I. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation. 1995 Aug 1;92(3):595–605. doi: 10.1161/01.cir.92.3.595. [DOI] [PubMed] [Google Scholar]
  20. Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano ML, Ditto WL, Kaplan DT. Evidence for determinism in ventricular fibrillation. Phys Rev Lett. 1995 Aug 7;75(6):1230–1233. doi: 10.1103/PhysRevLett.75.1230. [DOI] [PubMed] [Google Scholar]
  21. Zipes D. P., Fischer J., King R. M., Nicoll A deB, Jolly W. W. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol. 1975 Jul;36(1):37–44. doi: 10.1016/0002-9149(75)90865-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES