Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 15;100(10):2538–2546. doi: 10.1172/JCI119796

Lupus-specific antibodies reveal an altered pattern of somatic mutation.

A J Manheimer-Lory 1, G Zandman-Goddard 1, A Davidson 1, C Aranow 1, B Diamond 1
PMCID: PMC508454  PMID: 9366568

Abstract

The F4 idiotype is a heavy chain determinant expressed almost exclusively on IgG immunoglobulins and is highly associated with specificity for double-stranded DNA. Since high-titered F4 expression is present predominantly in sera of patients with systemic lupus erythematosus (SLE), we thought F4+ IgG antibodies might constitute a useful subset of immunoglobulins in which to investigate lupus-specific alterations in variable (V) region gene expression or in the process of somatic mutation. This molecular analysis of F4+ B cell lines generated from lupus patients demonstrates that despite the strong association of F4 reactivity with specificity for native DNA, there is no apparent VH gene restriction. Furthermore, VH gene segments encoding these antibodies are also used in protective immune responses. An examination of the process of somatic mutation in F4+ antibodies showed no abnormality in frequency of somatic mutation nor in the distribution of mutations in complementarity-determining regions or framework regions. However, there was a decrease in targeting of mutations to putative mutational hot spots. This subtle difference in mutations present in these antibodies may reflect an intrinsic defect in mutational machinery or, more likely, altered state of B cell activation that affects the mutational process and perhaps also negative selection.

Full Text

The Full Text of this article is available as a PDF (315.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adderson E. E., Shackelford P. G., Quinn A., Wilson P. M., Cunningham M. W., Insel R. A., Carroll W. L. Restricted immunoglobulin VH usage and VDJ combinations in the human response to Haemophilus influenzae type b capsular polysaccharide. Nucleotide sequences of monospecific anti-Haemophilus antibodies and polyspecific antibodies cross-reacting with self antigens. J Clin Invest. 1993 Jun;91(6):2734–2743. doi: 10.1172/JCI116514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andris J. S., Ehrlich P. H., Ostberg L., Capra J. D. Probing the human antibody repertoire to exogenous antigens. Characterization of the H and L chain V region gene segments from anti-hepatitis B virus antibodies. J Immunol. 1992 Dec 15;149(12):4053–4059. [PubMed] [Google Scholar]
  3. Andris J. S., Johnson S., Zolla-Pazner S., Capra J. D. Molecular characterization of five human anti-human immunodeficiency virus type 1 antibody heavy chains reveals extensive somatic mutation typical of an antigen-driven immune response. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7783–7787. doi: 10.1073/pnas.88.17.7783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bensimon C., Chastagner P., Zouali M. Human lupus anti-DNA autoantibodies undergo essentially primary V kappa gene rearrangements. EMBO J. 1994 Jul 1;13(13):2951–2962. doi: 10.1002/j.1460-2075.1994.tb06593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betz A. G., Neuberger M. S., Milstein C. Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today. 1993 Aug;14(8):405–411. doi: 10.1016/0167-5699(93)90144-a. [DOI] [PubMed] [Google Scholar]
  6. Brezinschek H. P., Brezinschek R. I., Lipsky P. E. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995 Jul 1;155(1):190–202. [PubMed] [Google Scholar]
  7. Cox J. P., Tomlinson I. M., Winter G. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol. 1994 Apr;24(4):827–836. doi: 10.1002/eji.1830240409. [DOI] [PubMed] [Google Scholar]
  8. Daley M. D., Peng H. Q., Misener V., Liu X. Y., Chen P. P., Siminovitch K. A. Molecular analysis of human immunoglobulin V lambda germline genes: subgroups V lambda III and V lambda IV. Mol Immunol. 1992 Dec;29(12):1515–1518. doi: 10.1016/0161-5890(92)90226-n. [DOI] [PubMed] [Google Scholar]
  9. Davidson A., Manheimer-Lory A., Aranow C., Peterson R., Hannigan N., Diamond B. Molecular characterization of a somatically mutated anti-DNA antibody bearing two systemic lupus erythematosus-related idiotypes. J Clin Invest. 1990 May;85(5):1401–1409. doi: 10.1172/JCI114584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davidson A., Smith A., Katz J., Preud'Homme J. L., Solomon A., Diamond B. A cross-reactive idiotype on anti-DNA antibodies defines a H chain determinant present almost exclusively on IgG antibodies. J Immunol. 1989 Jul 1;143(1):174–180. [PubMed] [Google Scholar]
  11. Demaison C., Chastagner P., Thèze J., Zouali M. Somatic diversification in the heavy chain variable region genes expressed by human autoantibodies bearing a lupus-associated nephritogenic anti-DNA idiotype. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):514–518. doi: 10.1073/pnas.91.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diamond B., Solomon G. A monoclonal antibody that recognizes anti-DNA antibodies in patients with systemic lupus. Ann N Y Acad Sci. 1983;418:379–385. doi: 10.1111/j.1749-6632.1983.tb18087.x. [DOI] [PubMed] [Google Scholar]
  13. Gatenby P. A., Irvine M. The bcl-2 proto-oncogene is overexpressed in systemic lupus erythematosus. J Autoimmun. 1994 Oct;7(5):623–631. doi: 10.1006/jaut.1994.1046. [DOI] [PubMed] [Google Scholar]
  14. Grayzel A., Solomon A., Aranow C., Diamond B. Antibodies elicited by pneumococcal antigens bear an anti-DNA--associated idiotype. J Clin Invest. 1991 Mar;87(3):842–846. doi: 10.1172/JCI115088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harada T., Suzuki N., Mizushima Y., Sakane T. Usage of a novel class of germ-line Ig variable region gene for cationic anti-DNA autoantibodies in human lupus nephritis and its role for the development of the disease. J Immunol. 1994 Nov 15;153(10):4806–4815. [PubMed] [Google Scholar]
  16. Harindranath N., Ikematsu H., Notkins A. L., Casali P. Structure of the VH and VL segments of polyreactive and monoreactive human natural antibodies to HIV-1 and Escherichia coli beta-galactosidase. Int Immunol. 1993 Dec;5(12):1523–1533. doi: 10.1093/intimm/5.12.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hillson J. L., Karr N. S., Oppliger I. R., Mannik M., Sasso E. H. The structural basis of germline-encoded VH3 immunoglobulin binding to staphylococcal protein A. J Exp Med. 1993 Jul 1;178(1):331–336. doi: 10.1084/jem.178.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ikematsu H., Harindranath N., Ueki Y., Notkins A. L., Casali P. Clonal analysis of a human antibody response. II. Sequences of the VH genes of human IgM, IgG, and IgA to rabies virus reveal preferential utilization of VHIII segments and somatic hypermutation. J Immunol. 1993 Feb 15;150(4):1325–1337. [PMC free article] [PubMed] [Google Scholar]
  19. Isenberg D., Williams W., Axford J., Bakimer R., Bell D., Casaseca-Grayson T., Diamond B., Ebling F., Hahn B., Harkiss G. Comparison of DNA antibody idiotypes in human sera: an international collaborative study of 19 idiotypes from 11 different laboratories. J Autoimmun. 1990 Aug;3(4):393–414. doi: 10.1016/s0896-8411(05)80008-3. [DOI] [PubMed] [Google Scholar]
  20. Kieber-Emmons T., von Feldt J. M., Godillot A. P., McCallus D., Srikantan V., Weiner D. B., Williams W. V. Isolated VH4 heavy chain variable regions bind DNA characterization of a recombinant antibody heavy chain library derived from patient(s) with active SLE. Lupus. 1994 Oct;3(5):379–392. doi: 10.1177/096120339400300504. [DOI] [PubMed] [Google Scholar]
  21. Livneh A., Gazit E., Diamond B. The preferential expression of the anti-DNA associated 8.12 idiotype in lupus is not genetically controlled. Autoimmunity. 1994;18(1):1–6. doi: 10.3109/08916939409014673. [DOI] [PubMed] [Google Scholar]
  22. Manheimer-Lory A., Katz J. B., Pillinger M., Ghossein C., Smith A., Diamond B. Molecular characteristics of antibodies bearing an anti-DNA-associated idiotype. J Exp Med. 1991 Dec 1;174(6):1639–1652. doi: 10.1084/jem.174.6.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manheimer-Lory A., Monhian R., Splaver A., Gaynor B., Diamond B. Analysis of the V kappa I family: germline genes from an SLE patient and expressed autoantibodies. Autoimmunity. 1995;20(4):259–265. doi: 10.3109/08916939508995703. [DOI] [PubMed] [Google Scholar]
  24. Mazel S., Burtrum D., Petrie H. T. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med. 1996 May 1;183(5):2219–2226. doi: 10.1084/jem.183.5.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Newkirk M. M., Gram H., Heinrich G. F., Ostberg L., Capra J. D., Wasserman R. L. Complete protein sequences of the variable regions of the cloned heavy and light chains of a human anti-cytomegalovirus antibody reveal a striking similarity to human monoclonal rheumatoid factors of the Wa idiotypic family. J Clin Invest. 1988 May;81(5):1511–1518. doi: 10.1172/JCI113483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Keefe T. L., Datta S. K., Imanishi-Kari T. Cationic residues in pathogenic anti-DNA autoantibodies arise by mutations of a germ-line gene that belongs to a large VH gene subfamily. Eur J Immunol. 1992 Mar;22(3):619–624. doi: 10.1002/eji.1830220302. [DOI] [PubMed] [Google Scholar]
  27. O'Reilly L. A., Huang D. C., Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 1996 Dec 16;15(24):6979–6990. [PMC free article] [PubMed] [Google Scholar]
  28. Paul E., Iliev A. A., Livneh A., Diamond B. The anti-DNA-associated idiotype 8.12 is encoded by the V lambda II gene family and maps to the vicinity of L chain CDR1. J Immunol. 1992 Dec 1;149(11):3588–3595. [PubMed] [Google Scholar]
  29. Pilkington G. R., Duan L., Zhu M., Keil W., Pomerantz R. J. Recombinant human Fab antibody fragments to HIV-1 Rev and Tat regulatory proteins: direct selection from a combinatorial phage display library. Mol Immunol. 1996 Mar-Apr;33(4-5):439–450. doi: 10.1016/0161-5890(95)00153-0. [DOI] [PubMed] [Google Scholar]
  30. Pirofski L., Lui R., DeShaw M., Kressel A. B., Zhong Z. Analysis of human monoclonal antibodies elicited by vaccination with a Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide vaccine. Infect Immun. 1995 Aug;63(8):3005–3014. doi: 10.1128/iai.63.8.3005-3014.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Radic M. Z., Mackle J., Erikson J., Mol C., Anderson W. F., Weigert M. Residues that mediate DNA binding of autoimmune antibodies. J Immunol. 1993 Jun 1;150(11):4966–4977. [PubMed] [Google Scholar]
  32. Radic M. Z., Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol. 1994;12:487–520. doi: 10.1146/annurev.iy.12.040194.002415. [DOI] [PubMed] [Google Scholar]
  33. Rioux J. D., Rauch J., Silvestri L., Newkirk M. M. A human rheumatoid factor C304 shares VH and VL gene usage with antibodies specific for ubiquitous human viral pathogens. Scand J Immunol. 1994 Sep;40(3):350–354. doi: 10.1111/j.1365-3083.1994.tb03472.x. [DOI] [PubMed] [Google Scholar]
  34. Rioux J. D., Zdárský E., Newkirk M. M., Rauch J. Anti-DNA and anti-platelet specificities of SLE-derived autoantibodies: evidence for CDR2H mutations and CDR3H motifs. Mol Immunol. 1995 Jul;32(10):683–696. doi: 10.1016/0161-5890(95)00045-g. [DOI] [PubMed] [Google Scholar]
  35. Rogozin I. B., Kolchanov N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta. 1992 Nov 15;1171(1):11–18. doi: 10.1016/0167-4781(92)90134-l. [DOI] [PubMed] [Google Scholar]
  36. Rose L. M., Latchman D. S., Isenberg D. A. Bcl-2 expression is unaltered in unfractionated peripheral blood mononuclear cells in patients with systemic lupus erythematosus. Br J Rheumatol. 1995 Apr;34(4):316–320. doi: 10.1093/rheumatology/34.4.316. [DOI] [PubMed] [Google Scholar]
  37. Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 Apr 1;156(7):2642–2652. [PubMed] [Google Scholar]
  39. Suzuki N., Harada T., Mihara S., Sakane T. Characterization of a germline Vk gene encoding cationic anti-DNA antibody and role of receptor editing for development of the autoantibody in patients with systemic lupus erythematosus. J Clin Invest. 1996 Oct 15;98(8):1843–1850. doi: 10.1172/JCI118985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swanson P. C., Ackroyd C., Glick G. D. Ligand recognition by anti-DNA autoantibodies. Affinity, specificity, and mode of binding. Biochemistry. 1996 Feb 6;35(5):1624–1633. doi: 10.1021/bi9516788. [DOI] [PubMed] [Google Scholar]
  41. Tomlinson I. M., Walter G., Marks J. D., Llewelyn M. B., Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol. 1992 Oct 5;227(3):776–798. doi: 10.1016/0022-2836(92)90223-7. [DOI] [PubMed] [Google Scholar]
  42. Watanabe-Fukunaga R., Brannan C. I., Copeland N. G., Jenkins N. A., Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992 Mar 26;356(6367):314–317. doi: 10.1038/356314a0. [DOI] [PubMed] [Google Scholar]
  43. Williams S. C., Winter G. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur J Immunol. 1993 Jul;23(7):1456–1461. doi: 10.1002/eji.1830230709. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES