Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 15;100(10):2562–2567. doi: 10.1172/JCI119799

Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy.

A R Crawford 1, A J Smith 1, V C Hatch 1, R P Oude Elferink 1, P Borst 1, J M Crawford 1
PMCID: PMC508457  PMID: 9366571

Abstract

Hepatocellular secretion of bile salts into the biliary space induces phospholipid and cholesterol secretion, but the mechanism for integrated lipid secretion is poorly understood. Knockout mice unable to make the canalicular membrane mdr2 P-glycoprotein exhibit normal rates of bile salt secretion, yet are virtually incapable of secreting biliary phospholipid and cholesterol. As the mdr2 P-glycoprotein is thought to mediate transmembrane movement of phospholipid molecules, this mouse model was used to examine the mechanism for biliary phospholipid secretion. In wild-type mdr2 (+/+) mice, ultrarapid cryofixation of livers in situ revealed abundant unilamellar lipid vesicles within bile canalicular lumina. Although 74% of vesicles were adherent to the external aspect of the canalicular plasma membrane, bilayer exocytosis was not observed. Vesicle numbers in mdr2 (+/-) and (-/-) mice were 55 and 12% of wild-type levels, respectively. In a strain of mdr2 (-/-) mice which had been "rescued" by heterozygous genomic insertion of the MDR3 gene, the human homologue of the murine mdr2 gene, vesicle numbers returned to 95% of wild-type levels. Our findings indicate that biliary phospholipid is secreted as vesicles by a process largely dependent on the action of the murine mdr2 P-glycoprotein or human MDR3 P-glycoprotein. We conclude that mdr2-mediated phospholipid translocation from the internal to external hemileaflet of the canalicular membrane permits exovesiculation of the external hemileaflet, a vesiculation process promoted by the detergent environment of the bile canalicular lumen.

Full Text

The Full Text of this article is available as a PDF (275.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida P. F., Vaz W. L., Thompson T. E. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry. 1992 Aug 11;31(31):7198–7210. doi: 10.1021/bi00146a024. [DOI] [PubMed] [Google Scholar]
  2. Baatsen P. H. Empirically determined freezing time for quick-freezing with a liquid-nitrogen-cooled copper block. J Microsc. 1993 Oct;172(Pt 1):71–79. doi: 10.1111/j.1365-2818.1993.tb03395.x. [DOI] [PubMed] [Google Scholar]
  3. Berr F., Meier P. J., Stieger B. Evidence for the presence of a phosphatidylcholine translocator in isolated rat liver canalicular plasma membrane vesicles. J Biol Chem. 1993 Feb 25;268(6):3976–3979. [PubMed] [Google Scholar]
  4. Carey M. C., Lamont J. T. Cholesterol gallstone formation. 1. Physical-chemistry of bile and biliary lipid secretion. Prog Liver Dis. 1992;10:139–163. [PubMed] [Google Scholar]
  5. Cohen D. E., Angelico M., Carey M. C. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. J Lipid Res. 1990 Jan;31(1):55–70. [PubMed] [Google Scholar]
  6. Cohen D. E., Leighton L. S., Carey M. C. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile. Am J Physiol. 1992 Sep;263(3 Pt 1):G386–G395. doi: 10.1152/ajpgi.1992.263.3.G386. [DOI] [PubMed] [Google Scholar]
  7. Crawford J. M., Barnes S., Stearns R. C., Hastings C. L., Godleski J. J. Ultrastructural localization of a fluorinated bile salt in hepatocytes. Lab Invest. 1994 Jul;71(1):42–51. [PubMed] [Google Scholar]
  8. Crawford J. M., Möckel G. M., Crawford A. R., Hagen S. J., Hatch V. C., Barnes S., Godleski J. J., Carey M. C. Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res. 1995 Oct;36(10):2147–2163. [PubMed] [Google Scholar]
  9. Crawford J. M. Role of vesicle-mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis. 1996 May;16(2):169–189. doi: 10.1055/s-2007-1007230. [DOI] [PubMed] [Google Scholar]
  10. Fuchs M., Cohen D. E. Transmembrane translocation of phosphatidylcholines and biliary lipid secretion: evidence for "flippases" in the canalicular plasma membrane. Hepatology. 1996 Dec;24(6):1546–1548. doi: 10.1002/hep.510240643. [DOI] [PubMed] [Google Scholar]
  11. Gilat T., Sömjen G. J. Phospholipid vesicles and other cholesterol carriers in bile. Biochim Biophys Acta. 1996 Jun 10;1286(2):95–115. doi: 10.1016/0304-4157(96)00005-6. [DOI] [PubMed] [Google Scholar]
  12. Groen A. K., Elferink R. P., Tager J. M. Control analysis of biliary lipid secretion. J Theor Biol. 1996 Oct 7;182(3):427–436. doi: 10.1006/jtbi.1996.0183. [DOI] [PubMed] [Google Scholar]
  13. Hall S. B., Wang Z., Notter R. H. Separation of subfractions of the hydrophobic components of calf lung surfactant. J Lipid Res. 1994 Aug;35(8):1386–1394. [PubMed] [Google Scholar]
  14. Handa T., Saito H., Miyajima K. Phospholipid monolayers at the triolein-saline interface: production of microemulsion particles and conversion of monolayers to bilayers. Biochemistry. 1990 Mar 20;29(11):2884–2890. doi: 10.1021/bi00463a034. [DOI] [PubMed] [Google Scholar]
  15. Kullak-Ublick G. A., Gerloff T., Hagenbuch B., Berr F., Meier P. J., Stieger B. Expression of a rat liver phosphatidylcholine translocator in Xenopus laevis oocytes. Hepatology. 1996 May;23(5):1254–1259. doi: 10.1002/hep.510230546. [DOI] [PubMed] [Google Scholar]
  16. Levin I. W., Thompson T. E., Barenholz Y., Huang C. Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers. Biochemistry. 1985 Oct 22;24(22):6282–6286. doi: 10.1021/bi00343a036. [DOI] [PubMed] [Google Scholar]
  17. Möckel G. M., Gorti S., Tandon R. K., Tanaka T., Carey M. C. Microscope laser light-scattering spectroscopy of vesicles within canaliculi of rat hepatocyte couplets. Am J Physiol. 1995 Jul;269(1 Pt 1):G73–G84. doi: 10.1152/ajpgi.1995.269.1.G73. [DOI] [PubMed] [Google Scholar]
  18. Nies A. T., Gatmaitan Z., Arias I. M. ATP-dependent phosphatidylcholine translocation in rat liver canalicular plasma membrane vesicles. J Lipid Res. 1996 May;37(5):1125–1136. [PubMed] [Google Scholar]
  19. Oude Elferink R. P., Ottenhoff R., van Wijland M., Frijters C. M., van Nieuwkerk C., Groen A. K. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res. 1996 May;37(5):1065–1075. [PubMed] [Google Scholar]
  20. Oude Elferink R. P., Ottenhoff R., van Wijland M., Frijters C. M., van Nieuwkerk C., Groen A. K. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res. 1996 May;37(5):1065–1075. [PubMed] [Google Scholar]
  21. Oude Elferink R. P., Ottenhoff R., van Wijland M., Smit J. J., Schinkel A. H., Groen A. K. Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest. 1995 Jan;95(1):31–38. doi: 10.1172/JCI117658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robins S. J., Fasulo J. M. High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile. J Clin Invest. 1997 Feb 1;99(3):380–384. doi: 10.1172/JCI119170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruetz S., Gros P. Enhancement of Mdr2-mediated phosphatidylcholine translocation by the bile salt taurocholate. Implications for hepatic bile formation. J Biol Chem. 1995 Oct 27;270(43):25388–25395. doi: 10.1074/jbc.270.43.25388. [DOI] [PubMed] [Google Scholar]
  24. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  25. Small D. M., Bourgès M. C., Dervichian D. G. The biophysics of lipidic associations. I. The ternary systems: lecithin-bile salt-water. Biochim Biophys Acta. 1966 Dec 7;125(3):563–580. [PubMed] [Google Scholar]
  26. Smit J. J., Schinkel A. H., Mol C. A., Majoor D., Mooi W. J., Jongsma A. P., Lincke C. R., Borst P. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest. 1994 Nov;71(5):638–649. [PubMed] [Google Scholar]
  27. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  28. Smith A. J., Timmermans-Hereijgers J. L., Roelofsen B., Wirtz K. W., van Blitterswijk W. J., Smit J. J., Schinkel A. H., Borst P. The human MDR3 P-glycoprotein promotes translocation of phosphatidylcholine through the plasma membrane of fibroblasts from transgenic mice. FEBS Lett. 1994 Nov 14;354(3):263–266. doi: 10.1016/0014-5793(94)01135-4. [DOI] [PubMed] [Google Scholar]
  29. Tall A. R., Small D. M. Body cholesterol removal: role of plasma high-density lipoproteins. Adv Lipid Res. 1980;17:1–51. [PubMed] [Google Scholar]
  30. Van Nieuwkerk C. M., Elferink R. P., Groen A. K., Ottenhoff R., Tytgat G. N., Dingemans K. P., Van Den Bergh Weerman M. A., Offerhaus G. J. Effects of Ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology. 1996 Jul;111(1):165–171. doi: 10.1053/gast.1996.v111.pm8698195. [DOI] [PubMed] [Google Scholar]
  31. Verkade H. J., Vonk R. J., Kuipers F. New insights into the mechanism of bile acid-induced biliary lipid secretion. Hepatology. 1995 Apr;21(4):1174–1189. [PubMed] [Google Scholar]
  32. Vlahcevic Z. R., Gurley E. C., Heuman D. M., Hylemon P. B. Bile salts in submicellar concentrations promote bidirectional cholesterol transfer (exchange) as a function of their hydrophobicity. J Lipid Res. 1990 Jun;31(6):1063–1071. [PubMed] [Google Scholar]
  33. Yuet P. K., Blankschtein D., Donovan J. M. Ultracentrifugation systematically overestimates vesicular cholesterol levels in bile. Hepatology. 1996 Apr;23(4):896–903. doi: 10.1002/hep.510230434. [DOI] [PubMed] [Google Scholar]
  34. van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES