Abstract
Endoglin (CD105), a component of the TGF-beta 1 receptor complex, is the target gene for the dominantly inherited vascular disorder hereditary hemorrhagic telangiectasia type 1 (HHT1). We have identified a novel endoglin splice site mutation, leading to an in-frame deletion of exon 3, in a new-born from a family with HHT. Expression of normal and mutant endoglin proteins was analyzed in umbilical vein endothelial cells from this baby and in activated monocytes from the affected father. In both samples, only normal dimeric endoglin (160 kD) was observed at the cell surface, at 50% of control levels. Despite an intact transmembrane region, mutant protein was only detectable by metabolic labeling, as an intracellular homodimer of 130 kD. In monocytes from three clinically affected HHT1 patients, with known mutations creating premature stop codons in exons 8 and 10, surface endoglin was also reduced by half and no mutant was detected. Overexpression into COS-1 cells of endoglin cDNA truncated in exons 7 and 11, revealed their intracellular expression, inability to be secreted and to form heterodimers at the cell surface. These results indicate that mutated forms of endoglin are transiently expressed intracellularly and not likely to act as dominant negative proteins, as proposed previously. A reduction in the level of functional endoglin is thus involved in the generation of HHT1, and associated arteriovenous malformations.
Full Text
The Full Text of this article is available as a PDF (612.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attisano L., Cárcamo J., Ventura F., Weis F. M., Massagué J., Wrana J. L. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell. 1993 Nov 19;75(4):671–680. doi: 10.1016/0092-8674(93)90488-c. [DOI] [PubMed] [Google Scholar]
- Attisano L., Wrana J. L., Montalvo E., Massagué J. Activation of signalling by the activin receptor complex. Mol Cell Biol. 1996 Mar;16(3):1066–1073. doi: 10.1128/mcb.16.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellón T., Corbí A., Lastres P., Calés C., Cebrián M., Vera S., Cheifetz S., Massague J., Letarte M., Bernabéu C. Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol. 1993 Sep;23(9):2340–2345. doi: 10.1002/eji.1830230943. [DOI] [PubMed] [Google Scholar]
- Berg J. N., Guttmacher A. E., Marchuk D. A., Porteous M. E. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin? J Med Genet. 1996 Mar;33(3):256–257. doi: 10.1136/jmg.33.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braverman I. M., Keh A., Jacobson B. S. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol. 1990 Oct;95(4):422–427. doi: 10.1111/1523-1747.ep12555569. [DOI] [PubMed] [Google Scholar]
- Burrows F. J., Derbyshire E. J., Tazzari P. L., Amlot P., Gazdar A. F., King S. W., Letarte M., Vitetta E. S., Thorpe P. E. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res. 1995 Dec;1(12):1623–1634. [PubMed] [Google Scholar]
- Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 7-1997. A 14-year-old girl with recurrent painless rectal bleeding. N Engl J Med. 1997 Feb 27;336(9):641–648. doi: 10.1056/NEJM199702273360908. [DOI] [PubMed] [Google Scholar]
- Cheifetz S., Bellón T., Calés C., Vera S., Bernabeu C., Massagué J., Letarte M. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992 Sep 25;267(27):19027–19030. [PubMed] [Google Scholar]
- Cheifetz S., Hernandez H., Laiho M., ten Dijke P., Iwata K. K., Massagué J. Distinct transforming growth factor-beta (TGF-beta) receptor subsets as determinants of cellular responsiveness to three TGF-beta isoforms. J Biol Chem. 1990 Nov 25;265(33):20533–20538. [PubMed] [Google Scholar]
- Derynck R., Gelbart W. M., Harland R. M., Heldin C. H., Kern S. E., Massagué J., Melton D. A., Mlodzik M., Padgett R. W., Roberts A. B. Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996 Oct 18;87(2):173–173. doi: 10.1016/s0092-8674(00)81335-5. [DOI] [PubMed] [Google Scholar]
- Dickson M. C., Martin J. S., Cousins F. M., Kulkarni A. B., Karlsson S., Akhurst R. J. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995 Jun;121(6):1845–1854. doi: 10.1242/dev.121.6.1845. [DOI] [PubMed] [Google Scholar]
- Eppert K., Scherer S. W., Ozcelik H., Pirone R., Hoodless P., Kim H., Tsui L. C., Bapat B., Gallinger S., Andrulis I. L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996 Aug 23;86(4):543–552. doi: 10.1016/s0092-8674(00)80128-2. [DOI] [PubMed] [Google Scholar]
- Fernández-Ruiz E., St-Jacques S., Bellón T., Letarte M., Bernabéu C. Assignment of the human endoglin gene (END) to 9q34-->qter. Cytogenet Cell Genet. 1993;64(3-4):204–207. doi: 10.1159/000133576. [DOI] [PubMed] [Google Scholar]
- Folkman J., D'Amore P. A. Blood vessel formation: what is its molecular basis? Cell. 1996 Dec 27;87(7):1153–1155. doi: 10.1016/s0092-8674(00)81810-3. [DOI] [PubMed] [Google Scholar]
- García-Mónaco R., Taylor W., Rodesch G., Alvarez H., Burrows P., Coubes P., Lasjaunias P. Pial arteriovenous fistula in children as presenting manifestation of Rendu-Osler-Weber disease. Neuroradiology. 1995 Jan;37(1):60–64. doi: 10.1007/BF00588522. [DOI] [PubMed] [Google Scholar]
- Gougos A., Letarte M. Biochemical characterization of the 44G4 antigen from the HOON pre-B leukemic cell line. J Immunol. 1988 Sep 15;141(6):1934–1940. [PubMed] [Google Scholar]
- Gougos A., Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol. 1988 Sep 15;141(6):1925–1933. [PubMed] [Google Scholar]
- Gougos A., Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990 May 25;265(15):8361–8364. [PubMed] [Google Scholar]
- Guttmacher A. E., Marchuk D. A., White R. I., Jr Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995 Oct 5;333(14):918–924. doi: 10.1056/NEJM199510053331407. [DOI] [PubMed] [Google Scholar]
- Heutink P., Haitjema T., Breedveld G. J., Janssen B., Sandkuijl L. A., Bontekoe C. J., Westerman C. J., Oostra B. A. Linkage of hereditary haemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. J Med Genet. 1994 Dec;31(12):933–936. doi: 10.1136/jmg.31.12.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoodless P. A., Haerry T., Abdollah S., Stapleton M., O'Connor M. B., Attisano L., Wrana J. L. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 1996 May 17;85(4):489–500. doi: 10.1016/s0092-8674(00)81250-7. [DOI] [PubMed] [Google Scholar]
- Jennings J. C., Mohan S., Linkhart T. A., Widstrom R., Baylink D. J. Comparison of the biological actions of TGF beta-1 and TGF beta-2: differential activity in endothelial cells. J Cell Physiol. 1988 Oct;137(1):167–172. doi: 10.1002/jcp.1041370120. [DOI] [PubMed] [Google Scholar]
- Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
- Johnson D. W., Berg J. N., Gallione C. J., McAllister K. A., Warner J. P., Helmbold E. A., Markel D. S., Jackson C. E., Porteous M. E., Marchuk D. A. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res. 1995 Aug;5(1):21–28. doi: 10.1101/gr.5.1.21. [DOI] [PubMed] [Google Scholar]
- Kikuchi K., Kowada M., Sasajima H. Vascular malformations of the brain in hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease). Surg Neurol. 1994 May;41(5):374–380. doi: 10.1016/0090-3019(94)90030-2. [DOI] [PubMed] [Google Scholar]
- Lastres P., Bellon T., Cabañas C., Sanchez-Madrid F., Acevedo A., Gougos A., Letarte M., Bernabeu C. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur J Immunol. 1992 Feb;22(2):393–397. doi: 10.1002/eji.1830220216. [DOI] [PubMed] [Google Scholar]
- Lastres P., Letamendía A., Zhang H., Rius C., Almendro N., Raab U., López L. A., Langa C., Fabra A., Letarte M. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol. 1996 Jun;133(5):1109–1121. doi: 10.1083/jcb.133.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Casillas F., Wrana J. L., Massagué J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 1993 Jul 2;73(7):1435–1444. doi: 10.1016/0092-8674(93)90368-z. [DOI] [PubMed] [Google Scholar]
- Macías-Silva M., Abdollah S., Hoodless P. A., Pirone R., Attisano L., Wrana J. L. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell. 1996 Dec 27;87(7):1215–1224. doi: 10.1016/s0092-8674(00)81817-6. [DOI] [PubMed] [Google Scholar]
- Massagué J., Attisano L., Wrana J. L. The TGF-beta family and its composite receptors. Trends Cell Biol. 1994 May;4(5):172–178. doi: 10.1016/0962-8924(94)90202-x. [DOI] [PubMed] [Google Scholar]
- Massagué J. Identification of receptors for type-beta transforming growth factor. Methods Enzymol. 1987;146:174–195. doi: 10.1016/s0076-6879(87)46020-5. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Baldwin M. A., Thukkani A. K., Gallione C. J., Berg J. N., Porteous M. E., Guttmacher A. E., Marchuk D. A. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet. 1995 Oct;4(10):1983–1985. doi: 10.1093/hmg/4.10.1983. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Grogg K. M., Johnson D. W., Gallione C. J., Baldwin M. A., Jackson C. E., Helmbold E. A., Markel D. S., McKinnon W. C., Murrell J. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994 Dec;8(4):345–351. doi: 10.1038/ng1294-345. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Lennon F., Bowles-Biesecker B., McKinnon W. C., Helmbold E. A., Markel D. S., Jackson C. E., Guttmacher A. E., Pericak-Vance M. A., Marchuk D. A. Genetic heterogeneity in hereditary haemorrhagic telangiectasia: possible correlation with clinical phenotype. J Med Genet. 1994 Dec;31(12):927–932. doi: 10.1136/jmg.31.12.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy S. A., Bicknell R. Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem. 1993 Nov 5;268(31):23066–23071. [PubMed] [Google Scholar]
- McDonald M. T., Papenberg K. A., Ghosh S., Glatfelter A. A., Biesecker B. B., Helmbold E. A., Markel D. S., Zolotor A., McKinnon W. C., Vanderstoep J. L. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nat Genet. 1994 Feb;6(2):197–204. doi: 10.1038/ng0294-197. [DOI] [PubMed] [Google Scholar]
- Müller G., Behrens J., Nussbaumer U., Böhlen P., Birchmeier W. Inhibitory action of transforming growth factor beta on endothelial cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5600–5604. doi: 10.1073/pnas.84.16.5600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piantanida M., Buscarini E., Dellavecchia C., Minelli A., Rossi A., Buscarini L., Danesino C. Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2. J Med Genet. 1996 Jun;33(6):441–443. doi: 10.1136/jmg.33.6.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pichuantes S., Vera S., Bourdeau A., Pece N., Kumar S., Wayner E. A., Letarte M. Mapping epitopes to distinct regions of the extracellular domain of endoglin using bacterially expressed recombinant fragments. Tissue Antigens. 1997 Sep;50(3):265–276. doi: 10.1111/j.1399-0039.1997.tb02870.x. [DOI] [PubMed] [Google Scholar]
- Plauchu H., de Chadarévian J. P., Bideau A., Robert J. M. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989 Mar;32(3):291–297. doi: 10.1002/ajmg.1320320302. [DOI] [PubMed] [Google Scholar]
- Porteous M. E., Curtis A., Williams O., Marchuk D., Bhattacharya S. S., Burn J. Genetic heterogeneity in hereditary haemorrhagic telangiectasia. J Med Genet. 1994 Dec;31(12):925–926. doi: 10.1136/jmg.31.12.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quackenbush E. J., Letarte M. Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. J Immunol. 1985 Feb;134(2):1276–1285. [PubMed] [Google Scholar]
- RayChaudhury A., D'Amore P. A. Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem. 1991 Nov;47(3):224–229. doi: 10.1002/jcb.240470307. [DOI] [PubMed] [Google Scholar]
- Roberts A. B., Sporn M. B. Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-beta. Am Rev Respir Dis. 1989 Oct;140(4):1126–1128. doi: 10.1164/ajrccm/140.4.1126. [DOI] [PubMed] [Google Scholar]
- Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shovlin C. L., Hughes J. M., Tuddenham E. G., Temperley I., Perembelon Y. F., Scott J., Seidman C. E., Seidman J. G. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994 Feb;6(2):205–209. doi: 10.1038/ng0294-205. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L. Molecular defects in rare bleeding disorders: hereditary haemorrhagic telangiectasia. Thromb Haemost. 1997 Jul;78(1):145–150. [PubMed] [Google Scholar]
- Shovlin C. L., Winstock A. R., Peters A. M., Jackson J. E., Hughes J. M. Medical complications of pregnancy in hereditary haemorrhagic telangiectasia. QJM. 1995 Dec;88(12):879–887. [PubMed] [Google Scholar]
- St-Jacques S., Cymerman U., Pece N., Letarte M. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology. 1994 Jun;134(6):2645–2657. doi: 10.1210/endo.134.6.8194490. [DOI] [PubMed] [Google Scholar]
- Vincent P., Plauchu H., Hazan J., Fauré S., Weissenbach J., Godet J. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum Mol Genet. 1995 May;4(5):945–949. doi: 10.1093/hmg/4.5.945. [DOI] [PubMed] [Google Scholar]
- Wrana J. L., Attisano L., Wieser R., Ventura F., Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341–347. doi: 10.1038/370341a0. [DOI] [PubMed] [Google Scholar]
- Yamaguchi H., Azuma H., Shigekiyo T., Inoue H., Saito S. A novel missense mutation in the endoglin gene in hereditary hemorrhagic telangiectasia. Thromb Haemost. 1997 Feb;77(2):243–247. [PubMed] [Google Scholar]
- Zhang H., Shaw A. R., Mak A., Letarte M. Endoglin is a component of the transforming growth factor (TGF)-beta receptor complex of human pre-B leukemic cells. J Immunol. 1996 Jan 15;156(2):564–573. [PubMed] [Google Scholar]
- ten Dijke P., Yamashita H., Ichijo H., Franzén P., Laiho M., Miyazono K., Heldin C. H. Characterization of type I receptors for transforming growth factor-beta and activin. Science. 1994 Apr 1;264(5155):101–104. doi: 10.1126/science.8140412. [DOI] [PubMed] [Google Scholar]