Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 15;100(10):2580–2587. doi: 10.1172/JCI119801

Smooth muscle cell expression of type I cyclic GMP-dependent protein kinase is suppressed by continuous exposure to nitrovasodilators, theophylline, cyclic GMP, and cyclic AMP.

G A Soff 1, T L Cornwell 1, D L Cundiff 1, S Gately 1, T M Lincoln 1
PMCID: PMC508459  PMID: 9366573

Abstract

A key component of the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in smooth muscle cells (SMC) is the type I GMP-dependent protein kinase (PK-G I). Activation of PK-G I mediates the reduction of cytoplasmic calcium concentrations and vasorelaxation. In this manuscript, we demonstrate that continuous exposure of SMC in culture to the nitrovasodilators S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) results in approximately 75% suppression of PK-G I mRNA by 48 h. PK-G I mRNA and protein were also suppressed by continuous exposure to cGMP analogues 8-bromo- and 8-(4-chlorophenylthio) guanosine-3,5-monophosphate or the cAMP analogue dibutyryl cAMP. These results suggest that activation of one or both of the cyclic nucleotide-dependent protein kinases mediates PK-G I mRNA suppression. Using isoform-specific cDNA probes, only the PK-G I alpha was detected in SMC, either at baseline or after suppression, while PK-G I beta was not detected, indicating that isoform switch was not contributing to the gene regulation. Using the transcription inhibitor actinomycin D, the PK-G I mRNA half-life in bovine SMC was observed to be 5 h. The half-life was not affected by the addition of SNAP to actinomycin D, indicating no effect on PK-G I mRNA stability. Nuclear runoff studies indicated a suppression of PK-G I gene transcription by SNAP. PK-G I suppression was also observed in vivo in rats given isosorbide dinitrate in the drinking water, with a dose-dependent suppression of PK-G I protein in the aorta. PK-G I antigen in whole rat lung extract was also suppressed by administration of isosorbide or theophylline in the drinking water. These data may contribute to our understanding of nitrovasodilator resistance, a phenomenon resulting from continuous exposure to nitroglycerin or other nitrovasodilators.

Full Text

The Full Text of this article is available as a PDF (228.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. L., Huang J. M., Hampl V., Nelson D. P., Shultz P. J., Weir E. K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7583–7587. doi: 10.1073/pnas.91.16.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baines C. P., Szwarc R. S., Ball H. A. Parallel tolerance between platelet cyclic GMP and preload effects of nitroglycerin in anaesthetized mini-pigs. Br J Pharmacol. 1994 Oct;113(2):334–335. doi: 10.1111/j.1476-5381.1994.tb16900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassan M. M. The daylong pattern of the antianginal effect of long-term three times daily administered isosorbide dinitrate. J Am Coll Cardiol. 1990 Oct;16(4):936–940. doi: 10.1016/s0735-1097(10)80344-4. [DOI] [PubMed] [Google Scholar]
  4. Bauer J. A., Fung H. L., Zheng W., Kwon Y. W., Gopalakrishnan M., Triggle D. J. Continuous versus intermittent nitroglycerin administration in experimental heart failure: vascular relaxation and radioligand binding to adrenoceptors and ion channels. J Cardiovasc Pharmacol. 1993 Oct;22(4):600–608. doi: 10.1097/00005344-199310000-00014. [DOI] [PubMed] [Google Scholar]
  5. Boesgaard S., Aldershvile J., Poulsen H. E., Loft S., Anderson M. E., Meister A. Nitrate tolerance in vivo is not associated with depletion of arterial or venous thiol levels. Circ Res. 1994 Jan;74(1):115–120. doi: 10.1161/01.res.74.1.115. [DOI] [PubMed] [Google Scholar]
  6. Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994 Apr 28;368(6474):850–853. doi: 10.1038/368850a0. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Brown K. E., Lawrence R., Sonenshein G. E. Concerted modulation of alpha 1(XI) and alpha 2(V) collagen mRNAs in bovine vascular smooth muscle cells. J Biol Chem. 1991 Dec 5;266(34):23268–23273. [PubMed] [Google Scholar]
  9. Colditz G. A., Halvorsen K. T., Goldhaber S. Z. Randomized clinical trials of transdermal nitroglycerin systems for the treatment of angina: a meta-analysis. Am Heart J. 1988 Jul;116(1 Pt 1):174–180. doi: 10.1016/0002-8703(88)90263-3. [DOI] [PubMed] [Google Scholar]
  10. Cornwell T. L., Arnold E., Boerth N. J., Lincoln T. M. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994 Nov;267(5 Pt 1):C1405–C1413. doi: 10.1152/ajpcell.1994.267.5.C1405. [DOI] [PubMed] [Google Scholar]
  11. Cornwell T. L., Soff G. A., Traynor A. E., Lincoln T. M. Regulation of the expression of cyclic GMP-dependent protein kinase by cell density in vascular smooth muscle cells. J Vasc Res. 1994 Nov-Dec;31(6):330–337. doi: 10.1159/000159061. [DOI] [PubMed] [Google Scholar]
  12. Forte L. R., Thorne P. K., Eber S. L., Krause W. J., Freeman R. H., Francis S. H., Corbin J. D. Stimulation of intestinal Cl- transport by heat-stable enterotoxin: activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1992 Sep;263(3 Pt 1):C607–C615. doi: 10.1152/ajpcell.1992.263.3.C607. [DOI] [PubMed] [Google Scholar]
  13. Francis S. H., Woodford T. A., Wolfe L., Corbin J. D. Types I alpha and I beta isozymes of cGMP-dependent protein kinase: alternative mRNA splicing may produce different inhibitory domains. Second Messengers Phosphoproteins. 1988;12(5-6):301–310. [PubMed] [Google Scholar]
  14. Gamm D. M., Francis S. H., Angelotti T. P., Corbin J. D., Uhler M. D. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem. 1995 Nov 10;270(45):27380–27388. doi: 10.1074/jbc.270.45.27380. [DOI] [PubMed] [Google Scholar]
  15. Gunther S., Alexander R. W., Atkinson W. J., Gimbrone M. A., Jr Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol. 1982 Feb;92(2):289–298. doi: 10.1083/jcb.92.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horowitz J. D., Antman E. M., Lorell B. H., Barry W. H., Smith T. W. Potentiation of the cardiovascular effects of nitroglycerin by N-acetylcysteine. Circulation. 1983 Dec;68(6):1247–1253. doi: 10.1161/01.cir.68.6.1247. [DOI] [PubMed] [Google Scholar]
  17. Jarchau T., Häusler C., Markert T., Pöhler D., Vanderkerckhove J., De Jonge H. R., Lohmann S. M., Walter U. Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9426–9430. doi: 10.1073/pnas.91.20.9426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jiang H., Shabb J. B., Corbin J. D. Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell Biol. 1992 Dec;70(12):1283–1289. doi: 10.1139/o92-175. [DOI] [PubMed] [Google Scholar]
  19. Koga T., Yoshida Y., Cai J. Q., Islam M. O., Imai S. Purification and characterization of 240-kDa cGMP-dependent protein kinase substrate of vascular smooth muscle. Close resemblance to inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Apr 15;269(15):11640–11647. [PubMed] [Google Scholar]
  20. Komalavilas P., Lincoln T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem. 1994 Mar 25;269(12):8701–8707. [PubMed] [Google Scholar]
  21. Landgraf W., Ruth P., Keilbach A., May B., Welling A., Hofmann F. Cyclic GMP-dependent protein kinase and smooth muscle relaxation. J Cardiovasc Pharmacol. 1992;20 (Suppl 1):S18–S22. [PubMed] [Google Scholar]
  22. Lermioglu F., Goyal J., Hassid A. Cell density modulates the decrease of cytosolic free Ca2+ induced by atrial natriuretic hormone, S-nitroso-N-acetylpenicillamine and 8-bromo cyclic GMP in cultured rat mesangial cells. Biochem J. 1991 Mar 1;274(Pt 2):323–328. doi: 10.1042/bj2740323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levy W. S., Katz R. J., Ruffalo R. L., Leiboff R. H., Wasserman A. G. Potentiation of the hemodynamic effects of acutely administered nitroglycerin by methionine. Circulation. 1988 Sep;78(3):640–645. doi: 10.1161/01.cir.78.3.640. [DOI] [PubMed] [Google Scholar]
  24. Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
  25. Majors A. K., Ehrhart L. A. Cell density and proliferation modulate collagen synthesis and procollagen mRNA levels in arterial smooth muscle cells. Exp Cell Res. 1992 May;200(1):168–174. doi: 10.1016/s0014-4827(05)80085-0. [DOI] [PubMed] [Google Scholar]
  26. Markert T., Vaandrager A. B., Gambaryan S., Pöhler D., Häusler C., Walter U., De Jonge H. R., Jarchau T., Lohmann S. M. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J Clin Invest. 1995 Aug;96(2):822–830. doi: 10.1172/JCI118128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. May D. C., Popma J. J., Black W. H., Schaefer S., Lee H. R., Levine B. D., Hillis L. D. In vivo induction and reversal of nitroglycerin tolerance in human coronary arteries. N Engl J Med. 1987 Sep 24;317(13):805–809. doi: 10.1056/NEJM198709243171305. [DOI] [PubMed] [Google Scholar]
  28. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  29. Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Münzel T., Holtz J., Mülsch A., Stewart D. J., Bassenge E. Nitrate tolerance in epicardial arteries or in the venous system is not reversed by N-acetylcysteine in vivo, but tolerance-independent interactions exist. Circulation. 1989 Jan;79(1):188–197. doi: 10.1161/01.cir.79.1.188. [DOI] [PubMed] [Google Scholar]
  31. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  32. Nevins J. R. Isolation and analysis of nuclear RNA. Methods Enzymol. 1987;152:234–241. doi: 10.1016/0076-6879(87)52025-0. [DOI] [PubMed] [Google Scholar]
  33. Ohara O., Nakano T., Teraoka H., Arita H. cAMP negatively regulates mRNA levels of actin and tropomyosin in rat cultured vascular smooth muscle cells. J Biochem. 1991 Jun;109(6):834–839. doi: 10.1093/oxfordjournals.jbchem.a123467. [DOI] [PubMed] [Google Scholar]
  34. Packer M., Lee W. H., Kessler P. D., Gottlieb S. S., Medina N., Yushak M. Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med. 1987 Sep 24;317(13):799–804. doi: 10.1056/NEJM198709243171304. [DOI] [PubMed] [Google Scholar]
  35. Packer M. What causes tolerance to nitroglycerin? The 100 year old mystery continues. J Am Coll Cardiol. 1990 Oct;16(4):932–935. doi: 10.1016/s0735-1097(10)80343-2. [DOI] [PubMed] [Google Scholar]
  36. Parker J. O., Farrell B., Lahey K. A., Rose B. F. Nitrate tolerance: the lack of effect of N-acetylcysteine. Circulation. 1987 Sep;76(3):572–576. doi: 10.1161/01.cir.76.3.572. [DOI] [PubMed] [Google Scholar]
  37. Parker J. O. Intermittent transdermal nitroglycerin therapy in the treatment of chronic stable angina. J Am Coll Cardiol. 1989 Mar 15;13(4):794–795. doi: 10.1016/0735-1097(89)90217-9. [DOI] [PubMed] [Google Scholar]
  38. Radomski M. W., Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost. 1993 Jul 1;70(1):36–41. [PubMed] [Google Scholar]
  39. Rovner A. S., Murphy R. A., Owens G. K. Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem. 1986 Nov 5;261(31):14740–14745. [PubMed] [Google Scholar]
  40. Scharfstein J. S., Keaney J. F., Jr, Slivka A., Welch G. N., Vita J. A., Stamler J. S., Loscalzo J. In vivo transfer of nitric oxide between a plasma protein-bound reservoir and low molecular weight thiols. J Clin Invest. 1994 Oct;94(4):1432–1439. doi: 10.1172/JCI117480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shirinsky V. P., Birukov K. G., Koteliansky V. E., Glukhova M. A., Spanidis E., Rogers J. D., Campbell J. H., Campbell G. R. Density-related expression of caldesmon and vinculin in cultured rabbit aortic smooth muscle cells. Exp Cell Res. 1991 Jun;194(2):186–189. doi: 10.1016/0014-4827(91)90352-u. [DOI] [PubMed] [Google Scholar]
  42. Smith J. B., Brock T. A. Analysis of angiotensin-stimulated sodium transport in cultured smooth muscle cells from rat aorta. J Cell Physiol. 1983 Mar;114(3):284–290. doi: 10.1002/jcp.1041140306. [DOI] [PubMed] [Google Scholar]
  43. Soff G. A., Jackman R. W., Rosenberg R. D. Expression of thrombomodulin by smooth muscle cells in culture: different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood. 1991 Feb 1;77(3):515–518. [PubMed] [Google Scholar]
  44. Tamura N., Itoh H., Ogawa Y., Nakagawa O., Harada M., Chun T. H., Suga S., Yoshimasa T., Nakao K. cDNA cloning and gene expression of human type Ialpha cGMP-dependent protein kinase. Hypertension. 1996 Mar;27(3 Pt 2):552–557. doi: 10.1161/01.hyp.27.3.552. [DOI] [PubMed] [Google Scholar]
  45. Thadani U., Fung H. L., Darke A. C., Parker J. O. Oral isosorbide dinitrate in angina pectoris: comparison of duration of action an dose-response relation during acute and sustained therapy. Am J Cardiol. 1982 Feb 1;49(2):411–419. doi: 10.1016/0002-9149(82)90518-5. [DOI] [PubMed] [Google Scholar]
  46. Torresi J., Horowitz J. D., Dusting G. J. Prevention and reversal of tolerance to nitroglycerine with N-acetylcysteine. J Cardiovasc Pharmacol. 1985 Jul-Aug;7(4):777–783. doi: 10.1097/00005344-198507000-00024. [DOI] [PubMed] [Google Scholar]
  47. Traynor A. E., Cundiff D. L., Soff G. A. cAMP influence on transcription of thrombomodulin is dependent on de novo synthesis of a protein intermediate: evidence for cohesive regulation of myogenic proteins in vascular smooth muscle. J Lab Clin Med. 1995 Sep;126(3):316–323. [PubMed] [Google Scholar]
  48. Watanabe H., Kakihana M., Ohtsuka S., Enomoto T., Yasui K., Sugishita Y. Platelet cyclic GMP. A potentially useful indicator to evaluate the effects of nitroglycerin and nitrate tolerance. Circulation. 1993 Jul;88(1):29–36. doi: 10.1161/01.cir.88.1.29. [DOI] [PubMed] [Google Scholar]
  49. Wernet W., Flockerzi V., Hofmann F. The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett. 1989 Jul 17;251(1-2):191–196. doi: 10.1016/0014-5793(89)81453-x. [DOI] [PubMed] [Google Scholar]
  50. Wolfe L., Francis S. H., Corbin J. D. Properties of a cGMP-dependent monomeric protein kinase from bovine aorta. J Biol Chem. 1989 Mar 5;264(7):4157–4162. [PubMed] [Google Scholar]
  51. Wu X. B., Brüne B., Von Appen F., Ullrich V. Efflux of cyclic GMP from activated human platelets. Mol Pharmacol. 1993 Apr;43(4):564–568. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES