Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Nov 15;100(10):2588–2595. doi: 10.1172/JCI119802

Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects.

M R Knowles 1, J M Robinson 1, R E Wood 1, C A Pue 1, W M Mentz 1, G C Wager 1, J T Gatzy 1, R C Boucher 1
PMCID: PMC508460  PMID: 9366574

Abstract

To test whether a major contribution of airways epithelial ion transport to lung defense reflects the regulation of airway surface liquid (ASL) ionic composition, we measured ASL composition using the filter paper technique. On nasal surfaces, the Cl- concentration (approximately 125 meq/liter) was similar to plasma, but the Na+ concentration (approximately 110 meq/liter) was below plasma, and K+ concentration (approximately 30 meq/liter) above plasma. The resting ASL osmolarity [2(Na+ + K+); 277 meq/liter] approximated isotonicity. There were no detectable differences between cystic fibrosis (CF) and normal subjects. In the lower airways, the Na+ concentrations were 80-85 meq/liter, K+ levels approximately 15 meq/liter, and Cl- concentrations 75-80 meq/liter. Measurements of Na+ activity with Na(+)-selective electrodes and osmolality with freezing point depression yielded values consistent with the monovalent cation measurements. Like the nasal surfaces, no differences in cations were detected between CF, normal, or chronic bronchitis subjects. The tracheobronchial ASL hypotonicity was hypothesized to reflect collection-induced gland secretion, a speculation consistent with observations in which induction of nasal gland secretion produced hypotonic secretions. We conclude that there are no significant differences in ASL ion concentrations between CF, normal, and chronic bronchitis subjects and, because ASL ion concentrations exceed values consistent with defensin activity, the failure of CF lung defense may reflect predominantly factors other than salt-dependent defensins.

Full Text

The Full Text of this article is available as a PDF (194.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. App E. M., Zayas J. G., King M. Rheology of mucus and transepithelial potential difference: small airways versus trachea. Eur Respir J. 1993 Jan;6(1):67–75. [PubMed] [Google Scholar]
  2. Ballard S. T., Schepens S. M., Falcone J. C., Meininger G. A., Taylor A. E. Regional bioelectric properties of porcine airway epithelium. J Appl Physiol (1985) 1992 Nov;73(5):2021–2027. doi: 10.1152/jappl.1992.73.5.2021. [DOI] [PubMed] [Google Scholar]
  3. Baroody F. M., Majchel A. M., Roecker M. M., Roszko P. J., Zegarelli E. C., Wood C. C., Naclerio R. M. Ipratropium bromide (Atrovent nasal spray) reduces the nasal response to methacholine. J Allergy Clin Immunol. 1992 Jun;89(6):1065–1075. doi: 10.1016/0091-6749(92)90290-i. [DOI] [PubMed] [Google Scholar]
  4. Boucher R. C. Human airway ion transport. Part one. Am J Respir Crit Care Med. 1994 Jul;150(1):271–281. doi: 10.1164/ajrccm.150.1.8025763. [DOI] [PubMed] [Google Scholar]
  5. Boucher R. C. Human airway ion transport. Part two. Am J Respir Crit Care Med. 1994 Aug;150(2):581–593. doi: 10.1164/ajrccm.150.2.8049852. [DOI] [PubMed] [Google Scholar]
  6. Boucher R. C., Stutts M. J., Bromberg P. A., Gatzy J. T. Regional differences in airway surface liquid composition. J Appl Physiol Respir Environ Exerc Physiol. 1981 Mar;50(3):613–620. doi: 10.1152/jappl.1981.50.3.613. [DOI] [PubMed] [Google Scholar]
  7. Burch L. H., Talbot C. R., Knowles M. R., Canessa C. M., Rossier B. C., Boucher R. C. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol. 1995 Aug;269(2 Pt 1):C511–C518. doi: 10.1152/ajpcell.1995.269.2.C511. [DOI] [PubMed] [Google Scholar]
  8. Engelhardt J. F., Yankaskas J. R., Ernst S. A., Yang Y., Marino C. R., Boucher R. C., Cohn J. A., Wilson J. M. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet. 1992 Nov;2(3):240–248. doi: 10.1038/ng1192-240. [DOI] [PubMed] [Google Scholar]
  9. Folkesson H. G., Matthay M. A., Frigeri A., Verkman A. S. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J Clin Invest. 1996 Feb 1;97(3):664–671. doi: 10.1172/JCI118463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilligan P. H. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev. 1991 Jan;4(1):35–51. doi: 10.1128/cmr.4.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilljam H., Ellin A., Strandvik B. Increased bronchial chloride concentration in cystic fibrosis. Scand J Clin Lab Invest. 1989 Apr;49(2):121–124. doi: 10.3109/00365518909105409. [DOI] [PubMed] [Google Scholar]
  12. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997 Feb 21;88(4):553–560. doi: 10.1016/s0092-8674(00)81895-4. [DOI] [PubMed] [Google Scholar]
  13. Gray T. E., Guzman K., Davis C. W., Abdullah L. H., Nettesheim P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996 Jan;14(1):104–112. doi: 10.1165/ajrcmb.14.1.8534481. [DOI] [PubMed] [Google Scholar]
  14. Jiang C., Finkbeiner W. E., Widdicombe J. H., McCray P. B., Jr, Miller S. S. Altered fluid transport across airway epithelium in cystic fibrosis. Science. 1993 Oct 15;262(5132):424–427. doi: 10.1126/science.8211164. [DOI] [PubMed] [Google Scholar]
  15. Joris L., Dab I., Quinton P. M. Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1633–1637. doi: 10.1164/ajrccm/148.6_Pt_1.1633. [DOI] [PubMed] [Google Scholar]
  16. Matsui H., Johnson L. G., Randell S. H., Boucher R. C. Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J Biol Chem. 1997 Jan 10;272(2):1117–1126. doi: 10.1074/jbc.272.2.1117. [DOI] [PubMed] [Google Scholar]
  17. Noone P. G., Regnis J. A., Liu X., Brouwer K. L., Robinson M., Edwards L., Knowles M. R. Airway deposition and clearance and systemic pharmacokinetics of amiloride following aerosolization with an ultrasonic nebulizer to normal airways. Chest. 1997 Nov 5;112(5):1283–1290. doi: 10.1378/chest.112.5.1283. [DOI] [PubMed] [Google Scholar]
  18. Olson E. N., Arnold H. H., Rigby P. W., Wold B. J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell. 1996 Apr 5;85(1):1–4. doi: 10.1016/s0092-8674(00)81073-9. [DOI] [PubMed] [Google Scholar]
  19. Quinton P. M. Viscosity versus composition in airway pathology. Am J Respir Crit Care Med. 1994 Jan;149(1):6–7. doi: 10.1164/ajrccm.149.1.8111599. [DOI] [PubMed] [Google Scholar]
  20. Rahmoune H., Shephard K. L. State of airway surface liquid on guinea pig trachea. J Appl Physiol (1985) 1995 Jun;78(6):2020–2024. doi: 10.1152/jappl.1995.78.6.2020. [DOI] [PubMed] [Google Scholar]
  21. Raphael G., Raphael M. H., Kaliner M. Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol. 1989 Jan;83(1):110–115. doi: 10.1016/0091-6749(89)90484-3. [DOI] [PubMed] [Google Scholar]
  22. Smith J. J., Karp P. H., Welsh M. J. Defective fluid transport by cystic fibrosis airway epithelia. J Clin Invest. 1994 Mar;93(3):1307–1311. doi: 10.1172/JCI117087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith J. J., Welsh M. J. Fluid and electrolyte transport by cultured human airway epithelia. J Clin Invest. 1993 Apr;91(4):1590–1597. doi: 10.1172/JCI116365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagenmann M., Baroody F. M., Jankowski R., Nadal J. C., Roecker-Cooper M., Wood C. C., Naclerio R. M. Onset and duration of inhibition of ipratropium bromide nasal spray on methacholine-induced nasal secretions. Clin Exp Allergy. 1994 Mar;24(3):288–290. doi: 10.1111/j.1365-2222.1994.tb00233.x. [DOI] [PubMed] [Google Scholar]
  25. Wanner A., Salathé M., O'Riordan T. G. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1868–1902. doi: 10.1164/ajrccm.154.6.8970383. [DOI] [PubMed] [Google Scholar]
  26. Widdicombe J. Airway and alveolar permeability and surface liquid thickness: theory. J Appl Physiol (1985) 1997 Jan;82(1):3–12. doi: 10.1152/jappl.1997.82.1.3. [DOI] [PubMed] [Google Scholar]
  27. Wills P. J., Hall R. L., Chan W., Cole P. J. Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea. J Clin Invest. 1997 Jan 1;99(1):9–13. doi: 10.1172/JCI119138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willumsen N. J., Davis C. W., Boucher R. C. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Invest. 1994 Aug;94(2):779–787. doi: 10.1172/JCI117397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yager D., Cloutier T., Feldman H., Bastacky J., Drazen J. M., Kamm R. D. Airway surface liquid thickness as a function of lung volume in small airways of the guinea pig. J Appl Physiol (1985) 1994 Nov;77(5):2333–2340. doi: 10.1152/jappl.1994.77.5.2333. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES