Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2671–2679. doi: 10.1172/JCI119812

Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages.

K Pahan 1, F G Sheikh 1, A M Namboodiri 1, I Singh 1
PMCID: PMC508470  PMID: 9389730

Abstract

This study explores the role of mevalonate inhibitors in the activation of NF-kbeta and the induction of inducible nitric oxide synthase (iNOS) and cytokines (TNF-alpha, IL-1beta, and IL-6) in rat primary astrocytes, microglia, and macrophages. Lovastatin and sodium phenylacetate (NaPA) were found to inhibit LPS- and cytokine-mediated production of NO and expression of iNOS in rat primary astrocytes; this inhibition was not due to depletion of end products of mevalonate pathway (e.g., cholesterol and ubiquinone). Reversal of the inhibitory effect of lovastatin on LPS-induced iNOS expression by mevalonate and farnesyl pyrophosphate and reversal of the inhibitory effect of NaPA on LPS-induced iNOS expression by farnesyl pyrophosphate, however, suggests a role of farnesylation in the LPS-mediated induction of iNOS. The inhibition of LPS-mediated induction of iNOS by FPT inhibitor II, an inhibitor of Ras farnesyl protein transferase, suggests that farnesylation of p21(ras) or other proteins regulates the induction of iNOS. Inhibition of LPS-mediated activation of NF-kbeta by lovastatin, NaPA, and FPT inhibitor II in astrocytes indicates that the observed inhibition of iNOS expression is mediated via inhibition of NF-kbeta activation. In addition to iNOS, lovastatin and NaPA also inhibited LPS-induced expression of TNF-alpha, IL-1beta, and IL-6 in rat primary astrocytes, microglia, and macrophages. This study delineates a novel role of the mevalonate pathway in controlling the expression of iNOS and different cytokines in rat astrocytes, microglia, and macrophages that may be important in developing therapeutics against cytokine- and NO-mediated neurodegenerative diseases.

Full Text

The Full Text of this article is available as a PDF (369.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bö L., Dawson T. M., Wesselingh S., Mörk S., Choi S., Kong P. A., Hanley D., Trapp B. D. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol. 1994 Nov;36(5):778–786. doi: 10.1002/ana.410360515. [DOI] [PubMed] [Google Scholar]
  3. Caira F., Pacot C., Bardot O., Cherkaoui Malki M., Latruffe N. Transcriptional and post-transcriptional analysis of peroxisomal protein encoding genes from rat treated with an hypolipemic agent, ciprofibrate. Effect of an intermittent treatment and influence of obesity. Biochem Pharmacol. 1995 Mar 1;49(5):611–619. doi: 10.1016/0006-2952(94)00480-a. [DOI] [PubMed] [Google Scholar]
  4. Casey P. J., Solski P. A., Der C. J., Buss J. E. p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8323–8327. doi: 10.1073/pnas.86.21.8323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castillo M., Martinez-Cayuela M., Zafra M. F., Garcia-Peregrin E. Effect of phenylalanine derivatives on the main regulatory enzymes of hepatic cholesterogenesis. Mol Cell Biochem. 1991 Jun 26;105(1):21–25. doi: 10.1007/BF00230371. [DOI] [PubMed] [Google Scholar]
  6. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drapier J. C., Hibbs J. B., Jr Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol. 1988 Apr 15;140(8):2829–2838. [PubMed] [Google Scholar]
  9. Feinstein D. L., Galea E., Cermak J., Chugh P., Lyandvert L., Reis D. J. Nitric oxide synthase expression in glial cells: suppression by tyrosine kinase inhibitors. J Neurochem. 1994 Feb;62(2):811–814. doi: 10.1046/j.1471-4159.1994.62020811.x. [DOI] [PubMed] [Google Scholar]
  10. Feinstein D. L., Galea E., Roberts S., Berquist H., Wang H., Reis D. J. Induction of nitric oxide synthase in rat C6 glioma cells. J Neurochem. 1994 Jan;62(1):315–321. doi: 10.1046/j.1471-4159.1994.62010315.x. [DOI] [PubMed] [Google Scholar]
  11. Galea E., Feinstein D. L., Reis D. J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10945–10949. doi: 10.1073/pnas.89.22.10945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giulian D., Baker T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986 Aug;6(8):2163–2178. doi: 10.1523/JNEUROSCI.06-08-02163.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  15. Hancock J. F., Cadwallader K., Marshall C. J. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 1991 Mar;10(3):641–646. doi: 10.1002/j.1460-2075.1991.tb07992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hu S., Sheng W. S., Peterson P. K., Chao C. C. Differential regulation by cytokines of human astrocyte nitric oxide production. Glia. 1995 Dec;15(4):491–494. doi: 10.1002/glia.440150412. [DOI] [PubMed] [Google Scholar]
  17. Jaffrey S. R., Snyder S. H. Nitric oxide: a neural messenger. Annu Rev Cell Dev Biol. 1995;11:417–440. doi: 10.1146/annurev.cb.11.110195.002221. [DOI] [PubMed] [Google Scholar]
  18. Jelinek T., Dent P., Sturgill T. W., Weber M. J. Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation. Mol Cell Biol. 1996 Mar;16(3):1027–1034. doi: 10.1128/mcb.16.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kikuchi A., Williams L. T. The post-translational modification of ras p21 is important for Raf-1 activation. J Biol Chem. 1994 Aug 5;269(31):20054–20059. [PubMed] [Google Scholar]
  20. Kikuchi A., Williams L. T. The post-translational modification of ras p21 is important for Raf-1 activation. J Biol Chem. 1994 Aug 5;269(31):20054–20059. [PubMed] [Google Scholar]
  21. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kwon G., Corbett J. A., Rodi C. P., Sullivan P., McDaniel M. L. Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology. 1995 Nov;136(11):4790–4795. doi: 10.1210/endo.136.11.7588208. [DOI] [PubMed] [Google Scholar]
  23. Law R. E., Stimmel J. B., Damore M. A., Carter C., Clarke S., Wall R. Lipopolysaccharide-induced NF-kappa B activation in mouse 70Z/3 pre-B lymphocytes is inhibited by mevinolin and 5'-methylthioadenosine: roles of protein isoprenylation and carboxyl methylation reactions. Mol Cell Biol. 1992 Jan;12(1):103–111. doi: 10.1128/mcb.12.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li S., Sedivy J. M. Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9247–9251. doi: 10.1073/pnas.90.20.9247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., Lane T. E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993 Aug 15;151(4):2132–2141. [PubMed] [Google Scholar]
  27. Mitrovic B., Ignarro L. J., Montestruque S., Smoll A., Merrill J. E. Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience. 1994 Aug;61(3):575–585. doi: 10.1016/0306-4522(94)90435-9. [DOI] [PubMed] [Google Scholar]
  28. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  29. Nishiya T., Uehara T., Nomura Y. Herbimycin A suppresses NF-kappa B activation and tyrosine phosphorylation of JAK2 and the subsequent induction of nitric oxide synthase in C6 glioma cells. FEBS Lett. 1995 Sep 11;371(3):333–336. doi: 10.1016/0014-5793(95)00933-z. [DOI] [PubMed] [Google Scholar]
  30. Pahan K., Namboodiri A. M., Sheikh F. G., Smith B. T., Singh I. Increasing cAMP attenuates induction of inducible nitric-oxide synthase in rat primary astrocytes. J Biol Chem. 1997 Mar 21;272(12):7786–7791. doi: 10.1074/jbc.272.12.7786. [DOI] [PubMed] [Google Scholar]
  31. Pahan K., Sheikh F. G., Namboodiri A. M., Singh I. N-acetyl cysteine inhibits induction of no production by endotoxin or cytokine stimulated rat peritoneal macrophages, C6 glial cells and astrocytes. Free Radic Biol Med. 1998 Jan 1;24(1):39–48. doi: 10.1016/s0891-5849(97)00137-8. [DOI] [PubMed] [Google Scholar]
  32. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  33. Reimann T., Büscher D., Hipskind R. A., Krautwald S., Lohmann-Matthes M. L., Baccarini M. Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J Immunol. 1994 Dec 15;153(12):5740–5749. [PubMed] [Google Scholar]
  34. Repko E. M., Maltese W. A. Post-translational isoprenylation of cellular proteins is altered in response to mevalonate availability. J Biol Chem. 1989 Jun 15;264(17):9945–9952. [PubMed] [Google Scholar]
  35. Samid D., Ram Z., Hudgins W. R., Shack S., Liu L., Walbridge S., Oldfield E. H., Myers C. E. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria. Cancer Res. 1994 Feb 15;54(4):891–895. [PubMed] [Google Scholar]
  36. Samid D., Shack S., Sherman L. T. Phenylacetate: a novel nontoxic inducer of tumor cell differentiation. Cancer Res. 1992 Apr 1;52(7):1988–1992. [PubMed] [Google Scholar]
  37. Sharif S. F., Hariri R. J., Chang V. A., Barie P. S., Wang R. S., Ghajar J. B. Human astrocyte production of tumour necrosis factor-alpha, interleukin-1 beta, and interleukin-6 following exposure to lipopolysaccharide endotoxin. Neurol Res. 1993 Apr;15(2):109–112. doi: 10.1080/01616412.1993.11740119. [DOI] [PubMed] [Google Scholar]
  38. Shin H. S., Drysdale B. E., Shin M. L., Noble P. W., Fisher S. N., Paznekas W. A. Definition of a lipopolysaccharide-responsive element in the 5'-flanking regions of MuRantes and crg-2. Mol Cell Biol. 1994 May;14(5):2914–2925. doi: 10.1128/mcb.14.5.2914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sinensky M., Beck L. A., Leonard S., Evans R. Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J Biol Chem. 1990 Nov 15;265(32):19937–19941. [PubMed] [Google Scholar]
  40. Stefanová I., Corcoran M. L., Horak E. M., Wahl L. M., Bolen J. B., Horak I. D. Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J Biol Chem. 1993 Oct 5;268(28):20725–20728. [PubMed] [Google Scholar]
  41. Thibault A., Samid D., Cooper M. R., Figg W. D., Tompkins A. C., Patronas N., Headlee D. J., Kohler D. R., Venzon D. J., Myers C. E. Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer. 1995 Jun 15;75(12):2932–2938. doi: 10.1002/1097-0142(19950615)75:12<2932::aid-cncr2820751221>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  42. Wink D. A., Kasprzak K. S., Maragos C. M., Elespuru R. K., Misra M., Dunams T. M., Cebula T. A., Koch W. H., Andrews A. W., Allen J. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991 Nov 15;254(5034):1001–1003. doi: 10.1126/science.1948068. [DOI] [PubMed] [Google Scholar]
  43. Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705–4708. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES