Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2722–2728. doi: 10.1172/JCI119817

Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo.

R Agah 1, L A Kirshenbaum 1, M Abdellatif 1, L D Truong 1, S Chakraborty 1, L H Michael 1, M D Schneider 1
PMCID: PMC508475  PMID: 9389735

Abstract

Irreversible exit from the cell cycle precludes the ability of cardiac muscle cells to increase cell number after infarction. Using adenoviral E1A, we previously demonstrated dual pocket protein- and p300-dependent pathways in neonatal rat cardiac myocytes, and have proven that E2F-1, which occupies the Rb pocket, suffices for these actions of E1A. By contrast, the susceptibility of adult ventricular cells to viral delivery of exogenous cell cycle regulators has not been tested, in vitro or in vivo. In cultured adult ventricular myocytes, adenoviral gene transfer of E2F-1 induced expression of proliferating cell nuclear antigen, cyclin-dependent protein kinase 4, cell division cycle 2 kinase, DNA synthesis, and apoptosis. In vivo, adenoviral delivery of E2F-1 by direct injection into myocardium induced DNA synthesis, shown by 5'-bromodeoxyuridine incorporation, and accumulation in G2/M, by image analysis of Feulgen-stained nuclei. In p53(-)/- mice, the prevalence of G1 exit was more than twofold greater; however, E2F-1 evoked apoptosis and rapid mortality comparably in both backgrounds. Thus, the differential effects of E2F-1 on G1 exit in wild-type versus p53-deficient mice illustrate the combinatorial power of viral gene delivery to genetically defined recipients: E2F-1 can override the G1/S checkpoint in postmitotic ventricular myocytes in vitro and in vivo, but leads to apoptosis even in p53(-)/- mice.

Full Text

The Full Text of this article is available as a PDF (609.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agah R., Frenkel P. A., French B. A., Michael L. H., Overbeek P. A., Schneider M. D. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest. 1997 Jul 1;100(1):169–179. doi: 10.1172/JCI119509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allday M. J., Inman G. J., Crawford D. H., Farrell P. J. DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J. 1995 Oct 16;14(20):4994–5005. doi: 10.1002/j.1460-2075.1995.tb00182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avantaggiati M. L., Carbone M., Graessmann A., Nakatani Y., Howard B., Levine A. S. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 1996 May 1;15(9):2236–2248. [PMC free article] [PubMed] [Google Scholar]
  4. Bugaisky L. B., Zak R. Differentiation of adult rat cardiac myocytes in cell culture. Circ Res. 1989 Mar;64(3):493–500. doi: 10.1161/01.res.64.3.493. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekaran C., Coopersmith C. M., Gordon J. I. Use of normal and transgenic mice to examine the relationship between terminal differentiation of intestinal epithelial cells and accumulation of their cell cycle regulators. J Biol Chem. 1996 Nov 8;271(45):28414–28421. doi: 10.1074/jbc.271.45.28414. [DOI] [PubMed] [Google Scholar]
  6. Chang M. W., Barr E., Seltzer J., Jiang Y. Q., Nabel G. J., Nabel E. G., Parmacek M. S., Leiden J. M. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science. 1995 Jan 27;267(5197):518–522. doi: 10.1126/science.7824950. [DOI] [PubMed] [Google Scholar]
  7. Claycomb W. C., Moses R. L. Growth factors and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Dev Biol. 1988 Jun;127(2):257–265. doi: 10.1016/0012-1606(88)90313-2. [DOI] [PubMed] [Google Scholar]
  8. DeGregori J., Kowalik T., Nevins J. R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol. 1995 Aug;15(8):4215–4224. doi: 10.1128/mcb.15.8.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeGregori J., Leone G., Miron A., Jakoi L., Nevins J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7245–7250. doi: 10.1073/pnas.94.14.7245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deng G., Podack E. R. Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2189–2193. doi: 10.1073/pnas.90.6.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992 Mar 19;356(6366):215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
  12. Eckner R., Ewen M. E., Newsome D., Gerdes M., DeCaprio J. A., Lawrence J. B., Livingston D. M. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 1994 Apr 15;8(8):869–884. doi: 10.1101/gad.8.8.869. [DOI] [PubMed] [Google Scholar]
  13. Eckner R., Ludlow J. W., Lill N. L., Oldread E., Arany Z., Modjtahedi N., DeCaprio J. A., Livingston D. M., Morgan J. A. Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol. 1996 Jul;16(7):3454–3464. doi: 10.1128/mcb.16.7.3454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eppenberger-Eberhardt M., Flamme I., Kurer V., Eppenberger H. M. Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev Biol. 1990 Jun;139(2):269–278. doi: 10.1016/0012-1606(90)90296-u. [DOI] [PubMed] [Google Scholar]
  15. Guo K., Walsh K. Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. J Biol Chem. 1997 Jan 10;272(2):791–797. doi: 10.1074/jbc.272.2.791. [DOI] [PubMed] [Google Scholar]
  16. Harper J. W., Elledge S. J. Cdk inhibitors in development and cancer. Curr Opin Genet Dev. 1996 Feb;6(1):56–64. doi: 10.1016/s0959-437x(96)90011-8. [DOI] [PubMed] [Google Scholar]
  17. Hsieh J. K., Fredersdorf S., Kouzarides T., Martin K., Lu X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 1997 Jul 15;11(14):1840–1852. doi: 10.1101/gad.11.14.1840. [DOI] [PubMed] [Google Scholar]
  18. Kirshenbaum L. A., Abdellatif M., Chakraborty S., Schneider M. D. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996 Nov 1;179(2):402–411. doi: 10.1006/dbio.1996.0270. [DOI] [PubMed] [Google Scholar]
  19. Kirshenbaum L. A., MacLellan W. R., Mazur W., French B. A., Schneider M. D. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest. 1993 Jul;92(1):381–387. doi: 10.1172/JCI116577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kirshenbaum L. A., Schneider M. D. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J Biol Chem. 1995 Apr 7;270(14):7791–7794. doi: 10.1074/jbc.270.14.7791. [DOI] [PubMed] [Google Scholar]
  21. Kirshenbaum L. A., de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation. 1997 Sep 2;96(5):1580–1585. doi: 10.1161/01.cir.96.5.1580. [DOI] [PubMed] [Google Scholar]
  22. Kowalik T. F., DeGregori J., Schwarz J. K., Nevins J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol. 1995 Apr;69(4):2491–2500. doi: 10.1128/jvi.69.4.2491-2500.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Long X., Boluyt M. O., Hipolito M. L., Lundberg M. S., Zheng J. S., O'Neill L., Cirielli C., Lakatta E. G., Crow M. T. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest. 1997 Jun 1;99(11):2635–2643. doi: 10.1172/JCI119452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Macleod K. F., Hu Y., Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 1996 Nov 15;15(22):6178–6188. [PMC free article] [PubMed] [Google Scholar]
  25. Morishita R., Gibbons G. H., Horiuchi M., Ellison K. E., Nakama M., Zhang L., Kaneda Y., Ogihara T., Dzau V. J. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5855–5859. doi: 10.1073/pnas.92.13.5855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohkubo Y., Kishimoto T., Nakata T., Yasuda H., Endo T. SV40 large T antigen reinduces the cell cycle in terminally differentiated myotubes through inducing Cdk2, Cdc2, and their partner cyclins. Exp Cell Res. 1994 Sep;214(1):270–278. doi: 10.1006/excr.1994.1258. [DOI] [PubMed] [Google Scholar]
  27. Raychaudhuri P., Bagchi S., Devoto S. H., Kraus V. B., Moran E., Nevins J. R. Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev. 1991 Jul;5(7):1200–1211. doi: 10.1101/gad.5.7.1200. [DOI] [PubMed] [Google Scholar]
  28. Sadoshima J., Aoki H., Izumo S. Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclin-dependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes. Circ Res. 1997 Feb;80(2):228–241. doi: 10.1161/01.res.80.2.228. [DOI] [PubMed] [Google Scholar]
  29. Schneider J. W., Gu W., Zhu L., Mahdavi V., Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Science. 1994 Jun 3;264(5164):1467–1471. doi: 10.1126/science.8197461. [DOI] [PubMed] [Google Scholar]
  30. Soonpaa M. H., Kim K. K., Pajak L., Franklin M., Field L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996 Nov;271(5 Pt 2):H2183–H2189. doi: 10.1152/ajpheart.1996.271.5.H2183. [DOI] [PubMed] [Google Scholar]
  31. Soonpaa M. H., Koh G. Y., Klug M. G., Field L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994 Apr 1;264(5155):98–101. doi: 10.1126/science.8140423. [DOI] [PubMed] [Google Scholar]
  32. Soonpaa M. H., Koh G. Y., Pajak L., Jing S., Wang H., Franklin M. T., Kim K. K., Field L. J. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 1997 Jun 1;99(11):2644–2654. doi: 10.1172/JCI119453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Soonpaa M. H., Koh G. Y., Pajak L., Jing S., Wang H., Franklin M. T., Kim K. K., Field L. J. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 1997 Jun 1;99(11):2644–2654. doi: 10.1172/JCI119453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Subramanian T., Tarodi B., Chinnadurai G. p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: suppression by E1B 19K and Bcl-2 proteins. Cell Growth Differ. 1995 Feb;6(2):131–137. [PubMed] [Google Scholar]
  35. Tiainen M., Pajalunga D., Ferrantelli F., Soddu S., Salvatori G., Sacchi A., Crescenzi M. Terminally differentiated skeletal myotubes are not confined to G0 but can enter G1 upon growth factor stimulation. Cell Growth Differ. 1996 Aug;7(8):1039–1050. [PubMed] [Google Scholar]
  36. Tiainen M., Spitkovsky D., Jansen-Dürr P., Sacchi A., Crescenzi M. Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms. Mol Cell Biol. 1996 Oct;16(10):5302–5312. doi: 10.1128/mcb.16.10.5302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Walker A., Taylor S. T., Hickman J. A., Dive C. Germinal center-derived signals act with Bcl-2 to decrease apoptosis and increase clonogenicity of drug-treated human B lymphoma cells. Cancer Res. 1997 May 15;57(10):1939–1945. [PubMed] [Google Scholar]
  38. Wang J., Helin K., Jin P., Nadal-Ginard B. Inhibition of in vitro myogenic differentiation by cellular transcription factor E2F1. Cell Growth Differ. 1995 Oct;6(10):1299–1306. [PubMed] [Google Scholar]
  39. Wang J., Nadal-Ginard B. Regulation of cyclins and p34CDC2 expression during terminal differentiation of C2C12 myocytes. Biochem Biophys Res Commun. 1995 Jan 5;206(1):82–88. doi: 10.1006/bbrc.1995.1012. [DOI] [PubMed] [Google Scholar]
  40. Weinberg R. A. E2F and cell proliferation: a world turned upside down. Cell. 1996 May 17;85(4):457–459. doi: 10.1016/s0092-8674(00)81244-1. [DOI] [PubMed] [Google Scholar]
  41. Weinberg R. A. The retinoblastoma protein and cell cycle control. Cell. 1995 May 5;81(3):323–330. doi: 10.1016/0092-8674(95)90385-2. [DOI] [PubMed] [Google Scholar]
  42. Yang Z. Y., Simari R. D., Perkins N. D., San H., Gordon D., Nabel G. J., Nabel E. G. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7905–7910. doi: 10.1073/pnas.93.15.7905. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES